FIZIKAI AKTIVITÁS HATÁSA A MOZGATÓRENSZERRE ÉS TALPI NYOMÁSVISZONYOKRA

Doktori (Ph.D.) értekezés

Leidecker Eleonóra

Pécsi Tudományegyetem Egészségügyi Kar
Egészségügyi Doktori Iskola
Pécs, 2017
FIZIKAI AKTIVITÁS HATÁSA A MOZGATÓRENSZERRE ÉS TALPI NYOMÁSVISZONYOKRA

Doktori (Ph.D.) értekezés

Leidecker Eleonóra

Pécs, 2017
<table>
<thead>
<tr>
<th>Rövidítések jegyzéke</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
</tr>
<tr>
<td>COP</td>
</tr>
<tr>
<td>ELEF</td>
</tr>
<tr>
<td>EU-OSHA</td>
</tr>
<tr>
<td>EUPASS</td>
</tr>
<tr>
<td>FA</td>
</tr>
<tr>
<td>GBD</td>
</tr>
<tr>
<td>IASP</td>
</tr>
<tr>
<td>IPAQ</td>
</tr>
<tr>
<td>KSH</td>
</tr>
<tr>
<td>LLK</td>
</tr>
<tr>
<td>LMT</td>
</tr>
<tr>
<td>LS</td>
</tr>
<tr>
<td>LU</td>
</tr>
<tr>
<td>MET</td>
</tr>
<tr>
<td>MLK</td>
</tr>
<tr>
<td>MMT</td>
</tr>
<tr>
<td>MS</td>
</tr>
<tr>
<td>MU</td>
</tr>
<tr>
<td>OLEF</td>
</tr>
<tr>
<td>TOT</td>
</tr>
<tr>
<td>WHO</td>
</tr>
</tbody>
</table>
Tartalom

1. Bevezető ... 7
2. Célkitűzések .. 8
3. I. Vizsgálat. Fizikai aktivitás vizsgálata egészséges munkaképes populációban 9
 3.1 Irodalmi áttekintés ... 9
 3.1.1 Fizikai aktivitás vizsgálata ... 9
 3.1.2 Fizikai inaktivitás előfordulásának nemzetközi és hazai jellemzői 11
 3.1.3 Életkor és a fizikai aktivitás kapcsolata .. 13
 3.1.4 Nemek és a fizikai aktivitás kapcsolata .. 13
 3.1.5 BMI és a fizikai aktivitás kapcsolata .. 14
 3.2 Anyag és módszer .. 15
 3.2.1 Etikai vonatkozás ... 16
 3.2.2 A fizikai aktivitás adatfelvételi módszere ... 16
 3.2.3 Adatelemzési módszer ... 16
 3.3 Eredmények ... 17
 3.4 Megbeszélés .. 19
 3.5 Következtetés ... 22
4. II. Vizsgálat. A láb pedobarográfia vizsgálata .. 23
 4.1 Irodalmi áttekintés .. 23
 4.1.1 Regionális plantáris nyomást befolyásoló tényezők ... 23
 4.1.2 Életkor és a talpnyomás minták kapcsolata .. 26
 4.1.3 Nem és a talpnyomás minták kapcsolata ... 27
 4.1.4 Fizikai aktivitás és a talpnyomás minták kapcsolata .. 28
 4.1.5 BMI és a talpnyomás minták kapcsolata ... 30
 4.2 Anyag és módszer .. 31
 4.2.1 Talpnyomás minták vizsgálata .. 32
 4.2.2 Adatelemzési módszer .. 33
 4.3 Eredmények ... 34
 4.3.1 Életkor és a talpnyomás minták vizsgálata ... 34
 4.3.2 Nemek és a talpnyomás minták vizsgálata ... 37
4.3.3 Fizikai aktivitás és a talpnyomás minták vizsgálata .. 38
4.3.4 BMI és a talpnyomás minták vizsgálata ... 40
4.4 Megbeszélés ... 43
4.4.1 Életkor és a talpnyomás minták vizsgálata ... 43
4.4.2 Nemek és a talpnyomás minták vizsgálata ... 45
4.4.3 Fizikai aktivitás és a talpnyomás minták kapcsolata ... 47
4.4.4 BMI és a talpnyomás minták vizsgálata ... 50
4.5 Következtetés ... 53
5. III. Vizsgálat. Ízületi fájdalom gyakoriságának vizsgálata .. 54
5.1 Irodalmi áttekintés .. 54
5.1.1. Ízületi fájdalom gyakoriságának nemzetközi és hazai jellemzői 54
5.1.2 Életkor és ízületi fájdalom kapcsolata .. 56
5.1.3 Nemek és ízületi fájdalom kapcsolata .. 57
5.1.4 Fizikai aktivitás és az ízületi fájdalom kapcsolata .. 58
5.1.5 BMI és az ízületi fájdalom kapcsolata .. 62
5.2 Anyag és módszer ... 63
5.2.1 Ízületi fájdalom vizsgálata .. 64
5.2.2 Adatelemzési módszer ... 64
5.3 Eredmények .. 65
5.3.1 Ízületi fájdalom gyakoriságának vizsgálata ... 65
5.3.2 Életkor és az ízületi fájdalom vizsgálata ... 68
5.3.3 Nemek és az ízületi fájdalom vizsgálata ... 69
5.3.4 Fizikai aktivitás és az ízületi fájdalom vizsgálata .. 70
5.3.5 BMI és ízületi fájdalom vizsgálata ... 71
5.4 Megbeszélés .. 71
5.4.1 Ízületi fájdalom gyakoriságának vizsgálata ... 71
5.4.2 Életkor és az ízületi fájdalom vizsgálata ... 74
5.4.3 Nemek és az ízületi fájdalom vizsgálata ... 75
5.4.4 Fizikai aktivitás és az ízületi fájdalom vizsgálata .. 76
5.4.5 BMI és az ízületi fájdalom vizsgálata .. 78
5.5 Következtetés ... 80
6. Összefoglalás .. 81
7. Új eredmények bemutatása .. 82
8. Kőszönetnyilvánítás ... 83
9. Melléklet... 84
10. Irodalomjegyzék ... 99
11. Publikációs jegyzék .. 112
1. Bevezető

A fizikai aktivitás és az ízületek egészsége közötti kapcsolat a mai napig nem tisztázott a tudomány számára. Nem ismert a fizikai aktivitásnak az a mennyiségi és minőségi határa, amely még kedvező hatású az ízületekre. A neuromusculáris rendszer mozgás és mechanikai ingerek hatására fenntartja izületvédelmi funkcióit, ugyanakkor ismertek olyan hosszú ideig fennálló, egyoldalú mozgások, gyakori túlterhelési folyamatok a munkavégzéssel vagy sportmozgással összetettben, amikor már a védelmi mechanizmusok kimerülnek és az ízület károsodási folyamatai megjelennek.

A láb az emberi test egyetlen szegmentuma, amely mozgás közben kapcsolatba kerül a talajjal. Szerepe döntő a talaj felől érkező ütés csillapításában, mechanikai energiáktól védve az ízületeket, jelentős feladata van a test stabilan tartásában és mozgásában. Megelőző vizsgálatok azt látszanak alátámasztani, hogy a fizikai aktivitás kedvezőtlen minősége és mennyisége a láb funkcionális és strukturális változásait indíthatja el, ami panaszokat okoz az egyén számára. A lábfájdalom gyakorisága az átlag népességben meglehetősen magas, 20-25%-ára jellemző (Thomas és mtsai., 2011).

Célkitűzésünk szerint feladatunknak tekintettük, hogy közlebbei képet nyújtsunk a fizikai aktivitás szerteágazó hatásának egy szegmenséről, megvizsgáljuk kapcsolatát az ízületi fájdalmakkal és talpnyomás viszonyokkal antropometriai és szociodemográfiai adatok figyelembevételével.
2. Célkitűzések

A kutatás célja meghatározni a vizsgált populáció fizikai aktivitási szintjeit, elemezni a fizikai aktivitás lábra gyakorolt hatását talpnyomás viszonyok mérésével, továbbá megvizsgálni a mozgásszervi fájdalom előfordulási gyakoriságát különböző fizikai aktivitású egyének körében, s mindezeket antropometriai és szociodemográfiai adatokkal összefüggésben, hogy komplexebb képet kaphassunk a fizikai aktivitás és a mozgatórendszer kapcsolatáról.

Az értekezés szerkezetileg három nagy egységre tagolódik, három vizsgálatot mutat be. Az első részben a fizikai aktivitás általános egészségnövelő hatásának irodalmi összefüggéseit tárgyaljuk, valamint a vizsgált személyek fizikai aktivitási jellemzőit mutatjuk be életkor-, nem- és testtömeg index adataikkal összefüggésben. A második egységben a felmért talpnyomás minták vizsgálatára történik, elsősorban a fizikai aktivitás függvényében. A harmadik vizsgálatban az izületi fájdalom lokalizációját, gyakoriságát, valamint kapcsolatát elemezzük a fizikai aktivitással, életkor, nem, testtömeg index tényezőikkel.

Az értekezésben kitűzött elsődleges célok elérése érdekében a vonatkozó szakirodalom vizsgálatán és bemutatásán túl, az alábbi kutatási kérdéseket vetettük fel:

1. A vizsgált alanyok körében milyen arányú a különböző fizikai aktivitási szintek megoszlása, ezen belül a fizikai inaktivitás megjelenése?
2. Az eltérő fizikai aktivitási csoportok milyen kapcsolatot mutatnak az életkorral, nemmel, testtömeg index-el?
3. Az egyénre jellemző fizikai aktivitás milyen hatással van a láb talpnyomás viszonyaira?
4. A talpnyomás minták milyen összefüggést mutatnak az életkorral, nemmel, testtömeg index-el?
5. Az egyénre jellemző fizikai aktivitásnak lehet-e szerepe a nagyízületi- és gerincfájdalom megjelenésében és lokalizációjában?
6. A nagyízületi- és gerincfájdalmak megjelenését és lokalizációját befolyásolják-e a vizsgált tényezők, úgy mint életkor, nem, testtömeg index?
3. I. Vizsgálat. Fizikai aktivitás vizsgálata egészséges munkaképes populációban

3.1 Irodalmi áttekintés

3.1.1 Fizikai aktivitás vizsgálata

A fizikai inaktivitás meghatározásával kapcsolatban azt az aktivitási szintet tekinthetjük alacsonynak, amely már nem rendelkezik védő hatással az emberi szervezet számára, vagyis nem éri el a legalább 150 perc/hét mérsékelt fizikai aktivitási szintet. Ez megfelel 600 MET-percek/hét alatti értékeknek (Kesaniemi és mtsai, 2001; Guthold és mtsai, 2008). Pedométerrel értékelve, az az inaktiv felnőtt, aki nem tesz meg 3000 lépést/nap a hét legtöbb napján. Energia fogyasztás alapján meghatározott értékkel is jellemezhető az inaktiv személy, akinek a napi energia felhasználása nem éri el az 1.5 kcal/kg/nap értéket (Canadian Community Health Survey, 2003).

Mérsékelt fizikai aktivitás alatt az enyhén lihgető és megízzasztó testmozgást értjük. Ez MET értékben kifejezve 4-6 MET. A kardio-pulmonáris fittséghez és a kedvező, egészségvédő élettani folyamatok érvényesüléséhez már elégséges, amennyiben a mozgást az ajánlott gyakoriság szerint és időtartamban végzik. A mérsékelt fizikai aktivitás heti szintje 600-3000 MET-percek/hét. Elegendő fizikai aktivitásként felnőttek számára 10 000 lépés/nap mennyiséget határoztak meg (Guthold és mtsai., 2008; Tudor-Locke mtsai., 2004).

Magas fizikai aktivitásnak az erős lihegéssel társuló mozgás tekinthető, amely eléri a 6-8 MET érték, heti szinten legalább 3000 MET-percek/hét mennyiséget jelent (Guthold és mtsai., 2008).
A mozgatórendszer számára már kedvezőtlen hatású, intenzív fizikai aktivitási szint meghatározása még nem ismert, de minden esetre individuálisnak kell tekintenünk. Ugyanakkor ismertek az extrém vagy hosszantartó, egyoldalú terhelést jelentő fizikai aktivitás negatív hatásai, mint például a túlfáradásos sérülések, izületi fájdalmak, alagút szindrómák, degeneratív szöveti elváltozások, fáradásos törések (Cook és Finch, 2011; Meeusen és mtsai., 2013, Lafévre-Colau és mtsai., 2016).

A fizikai aktivitás vizsgálatának jelentőségét fokozza a kiemelkedő egészségmegőrző és preventív hatása a krónikus betegségekkel szemben. Becslések szerint a fizikai inaktivitás évente körülbelül 600 ezer halálesetért felelős az Európai Unióban, és további 5,3 millió egészséges életév elvesztéséhez vezet évente az idő előtt

3.1.2 Fizikai inaktivitás előfordulásának nemzetközi és hazai jellemzői

A fejlett országokban a népesség jelentős hányada nem végez rendszeres rekreációs jellegű sporttevékenységet, amit tovább súlyosít az a tény, hogy az urbanizálódással önmagában is csökken a naponta végzett testmozgás mennyisége (Marques és mtsai., 2015). A legutóbbi felmérések szerint az Európai Unió területén az állampolgárok 59%-a soha nem sportol vagy kevesebbszer, mint havi 1-3 alkalom, 41%-a valamilyen rendszerességgel sportol (mindennap, illetve heti 1-4 alkalommal) és 8%-a heti ötször végez testmozgást (Eurobarométer, 2013).

A témában korábban megjelent hazai kutatások a lakosság körében végzett sporttevékenység felmérésére irányultak. A sportaktivitás heti gyakoriságával jellemzik a fizikai aktivitás különböző szintjeit, de nem vesznek figyelembe más jellegű mozgással kapcsolatos aktivitást, amely nap, mint nap hatást fejt ki az emberi szervezetre pl.: a közlekedésből, munkavégzésből fakadó fizikai aktivitást. Megjegyezzük, hogy a hazai kutatások eredményei a legritkábban hasonlóak, ami köszönhető a hazai kutatások sokfélésegének.

A kilencvenes években végzett vizsgálatok megkülönböztetést céloznak az aktív és nem aktív csoportok között. A KSH Időmérleg 1999/2000 vizsgálatának eredménye szerint a férfiak közel 15%-a átlagosan napi másfél órát, a nők 10%-a átlagosan napi egy óra tizenöt percet sportol (Füzesi, 2004). Kopp Mária vezetésével végzett Hungarostudy 2002 országos felmérés a sporttevékenység gyakoriságát mérté fel. Ez a tanulmány számol be először a magyar lakosságban fellehető nagyarányú fizikailag inaktiv rétegről. Eredményeik arról a tényről
árulkodnak, hogy a magyarországi felnőtt lakosság 75%-a nem végez rendszeres testmozgást, 6,3%-a heti egyszer, 9,7%-a heti többször és 7,2%-a naponta sportol. Kimutatásaik szerint a rendszeres fizikai aktivitást folytatók száma az életkor növekedésével drasztikus csökkenést mutat. A nemi megoszlás tekintetében férfiak között kevésbé, de magasabb volt a rendszeres fizikai aktivitást végzők aránya: a férfiak 25,5%-a, a nők 22,6%-a sportol heti egyszer vagy többször (Kopp és Kovács, 2006). A hazai kutatások közül az OLEF 2003 kutatásjelentés közül először adatokat a fizikai aktivitás szintjeinek gyakoriságáról a lakosságban, nem kizárólag a sportmozgással kapcsolatos aktivitást vizsgálva. Megállapításaik szerint a felnőtt magyar lakosságból a nők 16,4%-a és a férfiak 15,6%-a inaktiv, a fizikai inaktivitás esélye az életkorral nő. A lakosság csaknem 8%-a egyáltalán nem végez testmozgást (az idős nők 20,5%-a és az idős férfiak 18,7%-a) (OLEF, 2003). Az Európai Lakossági Egészségfelmérés (ELEF) részeként a KSH 2009-ben Magyarországon is elvégezte a harmonizált lakossági egészségfelmérést. A vizsgálat az előző héten végzett intenzív testmozgást mérete fel a mindennapi fizikai tevékenységgel és munkavégzéssel összefüggésben is, a legalább 10 percig tartó intenzív mozgást figyelembe véve. A kutatás eredménye megerősíti a korábbi adatokat, amely szerint a magyar lakosság fizikai aktivitása meglehetősen alacsony. A válaszadók közel fele egy napon sem végzett intenzív testmozgást, harmada mérsékelt aktivitást sem és ötöde nem gyalogol napi tíz percen keresztül sem. A legutóbb elvégzett Eurobarométer 2010 kutatás eredményei azt mutatták, hogy a magyar lakosságnak 23 %-a sportol, illetve végez testedzést legalább egy hét perccel, míg az Európai Unió átlagában ez a mutató 40%. Az Európai Unióban 21% azok aránya, akik havonta legalább néhány alkalommal sportolnak, míg Magyarországon 24%. Az unió átlagában 39%, a magyarok átlagában 53%, aki soha nem sportol. Ács és szerzőtársai (2011) ezeket az adatokat feldolgozva állapítják meg, hogy a teljes népesség több mint 2/3-a, azaz a magyar társadalom 77%-a fizikailag inaktiv életmódot folytat. A sporttevékenységen, rendszeres testedzésen kívül eső fizikai aktivitást – hobbi kerékpározást, sétát, táncot, kertészkedést- vesszük figyelembe, akkor a magyar lakosság jobb eredményeket mutat, de még így is az uniós átlag alattiak a mutatói: a magyar társadalomnak 16%-a találkozik a kerékpározók, 27%-a a sétázók, 16%-a a táncosok és 21%-a a kertészkedésre. A magyar fizikai aktivitása az EU átlagában az 82%-t éri, míg az unió átlagában az 79%-ot.
mérőszámai. A rendszeresen sportolók száma 23%-ról 39%-ra emelkedett és az önbevallásuk szerint soha nem sportolók aránya 53%-ról 44%-ra csökkent.

3.1.3 Életkor és a fizikai aktivitás kapcsolata

3.1.4 Nemek és a fizikai aktivitás kapcsolata

Az Eurobarométer 2013 mérési eredménye a férfiak magasabb arányú fizikai aktivitásáról számolt be az Unió területén. A férfiak 45%-a, a nők 37%-a minimum heti egy alkalommal sportol. A férfiak 37% soha nem sportol, nőknél ez az arány 47%. A sportoláson kívül a mindennapi fizikai tevékenységet is vizsgálta az Eurobarometer jelentése, mint pl. gyaloglás, kerékpározás, kertészkedés stb. Ezen a területen szintén a
férfiak mutatnak nagyobb aktivitási hajlandóságot a nőkhöz képeset. A rendszeresen végzett egyéb fizikai aktivitás férfiaknál 16%, szemben a nők 13%-os értékével. A különbségek háttérében kulturális tradíciókat, és a két nemre jellemző eltérő szocializációs folyamatokat említi az irodalom.

A Hungarostudy 2002 felmérése szerint a magyar lakosságban a férfiak között kevésbé, de magasabb a rendszeres fizikai aktivitást végzők aránya: a férfiak 25,5%-a, a nők 22,6%-a sportol heti egyszer vagy többször (Kopp és Kovács, 2006). Perényi és szerzőtársai (2013) a magyar ifjúság-kutatás keretében 2000-2012-ig végzettek vizsgálatot, s csökkenő tendenciát találtak a sportolási hajlandóság tekintetében (15-29 éves korosztály), amely nőknél nagyobb arányú volt, mint a férfiaknál. A nem sportoló nők aránya 69%-ról 73%-ra emelkedett, a nem sportoló férfiak aránya pedig 56%-ról 57%-ra a vizsgált periódusban.

3.1.5 BMI és a fizikai aktivitás kapcsolata

Az elhízás előfordulása növekvő incidenciát mutat a Föld nagyobb részén. A túlsúly kialakulásáért életmódbeli és környezeti tényezők egyaránt felelősek, de gazdasági és társadalmi egyenlőtlenségek is befolyásolják (Söderlund és mtsai., 2009).

Az Európai Lakossági Egészségfelmérés (ELEF, 2014) szerint a magyar lakosság több mint fele, 54%-a, a középkorú férfiaknak pedig 71%-a túlsúlyos vagy elhízott. A súlyfölösleg a férfiakat és az idősebb korosztályokat nagyobb arányban jellemezte. Az elhízottak körében jóval nagyobb részt tett ki (57%) az intenzív testmozgást nem végzők aránya (ELEF, 2009).

3.2 Anyag és módszer

Jelen fejezetben az egyénre jellemző fizikai aktivitás vizsgálatát mutatjuk be kiválasztott mintán, amely egészséges, munkaképes populációt képvisel. Célkitűzésünk szerint, az egyénre jellemző egy heti, totál fizikai aktivitási szintet határoztuk meg, amely lefedi annak lehetséges területeit, mint a munkahelyen végzett fizikai aktivitást, a közlekedési-, szabadidős tevékenységből fakadó fizikai aktivitást és a háztartásban végzett aktivitást.

Az átlagéletkor 39,98±10,3 év, a BMI átlag 25,11±4,36 kg/m² volt (1. sz. táblázat). A vizsgált populáció nem tekinthető reprezentatívnak ebben a kérdéskörben.

A vizsgálat beavvalószai kritériumai szerint az említett munkahelyeken dolgozó, 18 és 65 év közötti alkalmazottaknál végeztük el a fizikai aktivitás felmérést.
3.2.1 Etikai vonatkozás

A vizsgálat a Pécsi Tudományegyetem Klinikai Központ Regionális Kutatásetikai Bizottság jóváhagyásával történt (Engedély száma: No.: 3422). A kutatásban résztvevő alanyok aláírásukkal járultak hozzá vizsgálatukhoz.

3.2.2 A fizikai aktivitás adatfelvételi módszere

3.2.3 Adatalemzési módszer

A vizsgált egyének életkor-, nem-, testtömegindex jellemezőinek és fizikai aktivitási szintjeinek összehasonlítása egy-utas varianciaanalízissel történt. A fizikai aktivitás 3 szintű kategória változójának modellezésére multinomiális logisztikus regressziót alkalmaztunk, ahol minden esetben a mérsékelt (középső) fizikai aktivitás csoport volt a viszonyítási alap, vagyis a referencia-csoport (Hajdu, 2003). Az adatok feldolgozását SPSS 20.00 programmal végeztük. Az elemzések során a p<0,05 szignifikancia érték esetén vetettük el a függetlenséget feltételező nullhipotézist (Pintér és Rappai, 2007).
3.3 Eredmények

1. **sz. táblázat:** A minta jellemzői – nem, BMI, életkor – a heti, (totál) fizikai aktivitás szintjei szerint (alacsony, mérsékelt, magas), átlag és szórás értékek. (n=309)

<table>
<thead>
<tr>
<th></th>
<th>Teljes minta</th>
<th>Alacsony fizikai aktivitás</th>
<th>Mérsékelt fizikai aktivitás</th>
<th>Magas fizikai aktivitás</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem – (fő):</td>
<td>fő:114; nő:195</td>
<td>fő:2; nő:9</td>
<td>fő:8; nő:90</td>
<td>fő:104; nő:96</td>
<td><0,001</td>
</tr>
<tr>
<td>BMI – (kg/m²)</td>
<td>25,11±4,36</td>
<td>27,8±5,2</td>
<td>23,5± 3,8</td>
<td>25,8±4,4</td>
<td><0,001</td>
</tr>
<tr>
<td>Életkor - (év)</td>
<td>39,98±10,3</td>
<td>37,6±13,1</td>
<td>40,7±10,4</td>
<td>39,8±10,1</td>
<td>0,593</td>
</tr>
<tr>
<td>Totál fizikai aktivitás – (MET-perc/hét)</td>
<td>6633,1 ± 5316,7</td>
<td>577,0± 318,7</td>
<td>1887,7± 689,3</td>
<td>9291,4 ±4826,5</td>
<td><0,001</td>
</tr>
</tbody>
</table>

A vizsgált személyek összességét 309 fő, 195 nő; 114 férfi (63,1% nő és 36,9% férfi) alkotja. A magas fizikai aktivitású csoportba a minta 64,7%-a tartozik, a minta 31,7%-a mérsékelt- és 3,6%-a alacsony fizikai aktivitású, vagyis inaktív (2. sz. táblázat).

2. **sz. táblázat:** A minta megoszlása fizikai aktivitás (FA), nem, életkor, és BMI szerint (az összesen százalékában). (n=309)

<table>
<thead>
<tr>
<th></th>
<th>Alacsony FA</th>
<th>Mérsékelt FA</th>
<th>Magas FA</th>
<th>Összesen</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>férfi</td>
<td>0,60%</td>
<td>2,60%</td>
<td>33,70%</td>
<td>36,90%</td>
<td><0,001</td>
</tr>
<tr>
<td>nő</td>
<td>2,90%</td>
<td>29,10%</td>
<td>31,10%</td>
<td>63,10%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>3,60%</td>
<td>31,70%</td>
<td>64,70%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>Életkor (év)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-29</td>
<td>1,70%</td>
<td>7,40%</td>
<td>13,70%</td>
<td>22,70%</td>
<td>0,190</td>
</tr>
<tr>
<td>30-49</td>
<td>0,70%</td>
<td>16,70%</td>
<td>36,80%</td>
<td>54,20%</td>
<td></td>
</tr>
<tr>
<td>50-</td>
<td>1,00%</td>
<td>7,40%</td>
<td>14,70%</td>
<td>23,10%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>3,30%</td>
<td>31,40%</td>
<td>65,20%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normál</td>
<td>1,30%</td>
<td>22,70%</td>
<td>30,10%</td>
<td>54,00%</td>
<td><0,001</td>
</tr>
<tr>
<td>túlsúlyos</td>
<td>0,30%</td>
<td>6,80%</td>
<td>23,90%</td>
<td>31,10%</td>
<td></td>
</tr>
<tr>
<td>elhízott</td>
<td>1,90%</td>
<td>2,30%</td>
<td>10,70%</td>
<td>14,90%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>3,60%</td>
<td>31,70%</td>
<td>64,70%</td>
<td>100,00%</td>
<td></td>
</tr>
</tbody>
</table>

A nők 100%-át tekintve 49,2%-a magas fizikai aktivitású, 46,2%-a mérsékelt- és 4,6%-a az alacsony fizikai aktivitású csoportba tartozik. A férfiak 91,2%-a magas-, 7%-a mérsékelt és 1,8%-a alacsony fizikai aktivitású. A férfiaknak szignifikánsan magasabb a fizikai aktivitása, mint a nőké (p<0,001). (3. sz. táblázat).
3.sz. táblázat: A minta megoszlása fizikai aktivitás (FA), nem, életkor, és BMI szerint (a sor százalékában). (n=309)

<table>
<thead>
<tr>
<th></th>
<th>Alacsony FA</th>
<th>Mérsékelt FA</th>
<th>Magas FA</th>
<th>Összesen</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>férfi</td>
<td>1,80%</td>
<td>7,00%</td>
<td>91,20%</td>
<td>100,00%</td>
<td><0,001</td>
</tr>
<tr>
<td>nő</td>
<td>4,60%</td>
<td>46,20%</td>
<td>49,20%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>3,60%</td>
<td>31,70%</td>
<td>64,70%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>Életkor (év)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-29</td>
<td>7,40%</td>
<td>32,40%</td>
<td>60,30%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>30-49</td>
<td>1,20%</td>
<td>30,90%</td>
<td>67,90%</td>
<td>100,00%</td>
<td>0,19</td>
</tr>
<tr>
<td>50-</td>
<td>4,30%</td>
<td>31,90%</td>
<td>63,80%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>3,30%</td>
<td>31,40%</td>
<td>65,20%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normál</td>
<td>2,40%</td>
<td>41,90%</td>
<td>55,70%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>túlsúlyos</td>
<td>1,00%</td>
<td>21,90%</td>
<td>77,10%</td>
<td>100,00%</td>
<td><0,001</td>
</tr>
<tr>
<td>elhízott</td>
<td>13,00%</td>
<td>15,20%</td>
<td>71,70%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>3,60%</td>
<td>31,70%</td>
<td>64,70%</td>
<td>100,00%</td>
<td></td>
</tr>
</tbody>
</table>

4.sz. táblázat: A minta megoszlása fizikai aktivitás (FA), nem, életkor, és BMI szerint (az oszlop százalékban). (n=309)

<table>
<thead>
<tr>
<th></th>
<th>Alacsony FA</th>
<th>Mérsékelt FA</th>
<th>Magas FA</th>
<th>Összesen</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>férfi</td>
<td>18,20%</td>
<td>8,20%</td>
<td>52,00%</td>
<td>36,90%</td>
<td><0,001</td>
</tr>
<tr>
<td>nő</td>
<td>81,80%</td>
<td>91,80%</td>
<td>48,00%</td>
<td>63,10%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>Életkor (év)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-29</td>
<td>50,00%</td>
<td>23,40%</td>
<td>21,00%</td>
<td>22,70%</td>
<td></td>
</tr>
<tr>
<td>30-49</td>
<td>20,00%</td>
<td>53,20%</td>
<td>56,40%</td>
<td>54,20%</td>
<td>0,19</td>
</tr>
<tr>
<td>50-</td>
<td>30,00%</td>
<td>23,40%</td>
<td>22,60%</td>
<td>23,10%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normál</td>
<td>36,40%</td>
<td>71,40%</td>
<td>46,50%</td>
<td>54,00%</td>
<td></td>
</tr>
<tr>
<td>túlsúlyos</td>
<td>9,10%</td>
<td>21,40%</td>
<td>37,00%</td>
<td>31,10%</td>
<td><0,001</td>
</tr>
<tr>
<td>elhízott</td>
<td>54,50%</td>
<td>7,10%</td>
<td>16,50%</td>
<td>14,90%</td>
<td></td>
</tr>
<tr>
<td>összesen</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>100,00%</td>
<td></td>
</tr>
</tbody>
</table>

A vizsgált személyeket három életkori csoportra osztottuk: 18-29 év, 30-49 év, 50-65 évesek csoportjára. A 30-49 éves korosztályt jellemzi leginkább a magas fizikai aktivitás (67,9%). A magas fizikai aktivitás minden korosztály több mint 60%-ára jellemező. Az alacsony fizikai aktivitás a legfiatalabb korcsoportban a leggyakoribb, 7,4%-os az előfordulása, míg az idősebb, 50 feletti életkor csoportban 4,3%-os. A mérsékelt fizikai aktivitás előfordulási aránya közel hasonlóan jellemzi a három korosztályt (31%-32%). (3. sz. táblázat)
A minta 54%-a a normál testtömeg indexű kategóriába tartozik, 31,1%-a túlsúlyos és 14,9%-a elhízott. A magas fizikai aktivitásuk 46,5%-a normál-, 37%-a túlsúlyos-, 16%-a az elhízott BMI osztályba tartozik. Az inaktívak 54,5%-a elhízott és 9,1%-a túlsúlyos.(4. sz. táblázat)

5.sz. táblázat: Multinomiális logisztikus regresszió analízis eredményei a fizikai aktivitást (FA) befolyásoló tényezőkről (BMI, életkor, nem) (referencia csoport = a mérsékelten fizikailag aktív)

<table>
<thead>
<tr>
<th>Fizikai aktivitás méréte</th>
<th>Magyarázó változók</th>
<th>OR</th>
<th>CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alacsony FA</td>
<td>BMI</td>
<td>1,22</td>
<td>1,07</td>
<td>1,39</td>
</tr>
<tr>
<td></td>
<td>életkor</td>
<td>0,95</td>
<td>0,89</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>férfi</td>
<td>2,51</td>
<td>0,43</td>
<td>14,51</td>
</tr>
<tr>
<td>Magas FA</td>
<td>BMI</td>
<td>1,12</td>
<td>1,04</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td>életkor</td>
<td>0,99</td>
<td>0,96</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td>férfi</td>
<td>12,36</td>
<td>5,38</td>
<td>28,38</td>
</tr>
</tbody>
</table>

A fizikai aktivitás és az összes, vizsgált változó kapcsolatát értékelve megállapítható, hogy ha valaki férfi, akkor a mérsékelthez képest 12,36-szoros a valószínűsége annak, hogy magas a fizikai aktivitása. A BMI (egységnyi) növekedésével 1,12-szeresére nő a valószínűsége, hogy magas a fizikai aktivitása az illetőnek, továbbá a BMI (egységnyi) növekedésével 1,22-szeresére nő a valószínűsége, hogy alacsony a fizikai aktivitása a referencia két között jelen minta alapján szignifikáns kapcsolatot nem találtunk (5. sz. táblázat).

3.4 Megbeszéléts

A hazai és a nemzetközi szakirodalomban sem egységes a fizikai aktivitás vizsgálata, amely megnehezíti a téma feldolgozását és értékelését. Kevés kutatás vizsgálja az egyénre jellemző teljes fizikai aktivitást. Egyesek az ülő életmód vizsgálatával, mások a szabadidős fizikai aktivitás mérésével vagy a sporttevékenység gyakoriságával jellemzik egy populáció fizikai aktivitását.

A vizsgált minta nem reprezentatív, és az egyének munkavégzéséből fakadóan speciális. Ennek ismeretében mégis úgy gondoljuk, hogy egyes eredményeink relevánsnak tekinthetőek, különösen a BMI és a fizikai aktivitás kapcsolatának
elemzésekor, még akkor is, ha egy szűkebb populációról mutatnak keresztmetszeti képet.

A vizsgálatban résztvevőknél a foglalkozásból fakadó különbségek a munkahelyi fizikai aktivitást jelentősen meghatározzák, ezáltal a heti teljes fizikai aktivitást szintén. Vegyesen ülő (152 fő) és gyalogló (157 fő) foglalkozású személyeket vizsgáltunk. Ennek ellenére a mintára a fizikai inaktivitás alacsony aránya jellemző, mintegy 3,6%-os, a nőknél 4,6% és a férfiaknál 1,8%-os az előfordulása. A hazai kutatások ennél jóval magal magasabb arányú fizikai inaktivitásról számolnak be. A Hungarostudy 2002 országos felmérése szerint a magyarországi felnőtt lakosság 75%-a nem végez rendszeres fizikai aktivitást, az Eurobarometer 2010 szerint a magyar társadalom 77%-a fizikailag inaktiv életmódot él (Ács és mtsai., 2011; Kopp és Kovács, 2006).

Vizsgálatunkban csak munkaképes korú felnőttek tartoztak, 65 évnél idősebb korosztály nem. Ez további magyarázatul szolgálhat az alacsonyabb inaktivitási aránya a többi, ez irányú kutatással szemben, ahol idős, 70 év feletti populáció is a mintakeretbe tartozott.

Eredményeinkben jelentősen nagyarányú az egészség megőrzése szempontjából már kedvező, mérsékelt és a magas fizikai aktivitás gyakoriság, összesen 96,4%, annak ellenére, hogy a vizsgált minta közel fele ülő munkát végező személy volt. Az ülő munkát végző réteg úgy tűnik, gondoskodik a megfelelő mennyiségű fizikai aktivitásáról, mert heti fizikai aktivitásukat tekintve a magas vagy mérsékelt kategóriába tartoznak. A gyalogló postások a kifejezetten magas fizikai aktivitásúak közé tartoznak. Ók azok, akik munkahelyükön már extrém magas fizikai aktivitást végeznek, hiszen 25 kg-os válltáskával gyalogolnak a munkaidejük jelentős részében. A fentiek miatt a fizikai aktivitás átlag értékeinél nagy szórás jellemez a mintára (pl.: magas fizikai aktivitás: 9291,4±4826,5 MET-perc/hét) amit a vizsgálat limitációjaként szükséges figyelembe vennünk.

A vizsgált személyek 14,9%-a elhízott és 31,1%-a túlsúlyos, amely adatok megoszlása kedvezőbb BMI arányt mutat, mint amilyen a jellemző magyar átlag, de még így is magasnak mondható a túlsúlyosak aránya. Annak ellenére számolhatunk be erről az eredményről, hogy nagyon magas volt a vizsgált populáció átlagos fizikai aktivitása. A Hungarostudy 2002 kimutatása szerint Magyarországon 20% az elhízottak és 35% a túlsúlyosak aránya. Az ELEF 2014 hasonlóan a két kategória együttes 54%-os gyakoriságát mért fel (Kopp és Kovács, 2006). A legtöbb irodalmi adat az elhízottság
és a fizikai aktivitás fordított, erős kapcsolatáról szól (Varo és mtsai. 2003; Tudor-Locke és mtsai., 2009). Egyes vizsgálatok beszámolnak arról, hogy a magas BMI értékekkel rendelkezők megfelelő fizikai aktivitását állapították meg (Petersen és mtsai., 2004; Chen és Mao, 2006). Vizsgálatunk eredményei is megerősítik a fenti adatokat. Találtunk statisztikai kapcsolatot a magas fizikai aktivitás és a magasabb BMI értékek között (p<0,002). Ismert tény, hogy a testtömeg index vizsgálatával nem ismerjük a testszírtartalom megoszlását. A magas BMI érték mögött izomtömeg is állhat, amely magyarázhatja a magas fizikai aktivitás egyének magas BMI értékeit. Vizsgálatunkban a testszírtartalom mérését nem végeztük el. Eredményeink is jól mutatják, hogy ebben az esetben a BMI kategorizálás nem mutat precíz meghatározást.

Mészáros és munkatársai (2010) dolgozata kritikai észrevételeket fogalmazott meg a BMI megbízhatóságával kapcsolatban, amely szerint a BMI, mint egységesen alkalmazni kívánt jellemző paraméter, nem nagyon felel meg a tápláltsági állapot becslesésére, ugyanakkor alkalmazásának gyakorisága szinte egyeduralkodó az egyszerűsége miatt (Mészáros és mtsai., 2010).

Méréseink alapján megállapíthatjuk a férfi nem kiemelkedően erős kapcsolatát a magas fizikai aktivitással, 12.36-szor jellemző, hogy férfi az az illető, akinek magas a fizikai aktivitása. A férfiak magas fizikai aktivitása (91,2%) jelentősen gyakoribb, mint a nőké (49,2%). Eredményünket befolyásolhatja, hogy a vizsgált férfiak munkahelyükön magas fizikai aktivitást végeznek, szemben a vizsgált nőkkel, akik nagy része ülő munkát végez. Eredményeink megerősítik az irodalmi adatokat, a hazai és a nemzetközi kutatások legtöbbje a férfiak magasabb fizikai aktivitásáról számol be általában és a munkahelyen (Drygas és mtsai., 2009; Varo és mtsai., 2003; Eurobarometer 2014).

Az életkorcsoportok tekintetében a vizsgált alanyok között a fizikai inaktivitás leginkább a 29 évnél fiatalabbakat jellemzi (7,4%) majd az 50 évnél idősebbeket (4,3%). Más irodalmi adatok is szólnak a fiatal korosztály körében jellemző alacsony fizikai aktivitásról (Drygas és mtsai., 2009; Aszman és mtsai., 1997). A fizikai inaktivitás vizsgálatával foglalkozó tanulmányok szinte mindegyike beszámol az idős korosztály magas arányú inaktivitásáról is (Drygas és mtsai., 2009; Chen és Mao, 2006). Vizsgálatunkban 65 év feletti idősek nem szerepelnek, ennek köszönhetően az inaktivitás is kevésbé jellemző a mintára.
3.5 Következtetés

Jelen vizsgálat eredményeiből levonható legfontosabb következtetések:

- A magas fizikai aktivitás erős kapcsolatot mutat a férfi nemmel.

- A munkaképes korosztályban nem mutatható ki kapcsolat a fizikai inaktivitás és az életkor között.

- A magas testtömeg index érték mellett mind a fizikai inaktivitás, mind a magas fizikai aktivitás valószínűsége is megnő.
4. II. Vizsgálat. A láb pedobarográfiás vizsgálata

Az utóbbi évek biomechanikai kutatásai gyakran főkuszálják a láb statikai és dinamikai tulajdonságainak megismerésére, valamint funkciójának biomechanikai elemzésére. Folyamatos fejlődésen mennek keresztül a talp nyomásviszonyait mérő pedobarográfiás vizsgálatok és nagy segítséget jelentenek a prevenció és a gyógyászat számára. A klinikumban elsősorban a „diabéteszes láb” és a „reumás láb” esetében nagy a jelentősége a talp nyomásloszlás vizsgálatoknak. A prevenció területén a talpnyomás mintákkal számos tanulmány foglalkozik, többek között a láb túlterhelésével kapcsolatban, és elsősorban a sportolóknál megjelenő fáradásos elváltozásokkal összefüggésben. Az irodalmi adatok arra utalnak, hogy a gyaloglás, futás, a mozgás sebességének megváltozása, a talaj minősége, a sport kapcsán jelentkező fáradási mechanizmus hatására szignifikáns mértékben megváltoznak a talp nyomási viszonyai (Morag és Cavanagh 1999; 30: Hennig és Rosenbaum 1991; Nagel és mtsai., 2007; Christina és mtsai., 2001). A témában végzett vizsgálatok minden esetben egy aktuális sporttevékenységhez köthetően történtek pl.: maraton futást vagy maraton gyaloglást követően vizsgálták a terhelés hatását a lábra. Feltételezésünk szerint a mechanikai hatások és változások sporttevékenységtől függetlenül is, a mindennapi élet során érvényesülnek és kumulálódnak, befolyásolva a láb nyomási viszonyait és egészségi állapotát. Vizsgálatunk újszerűségét alátámasztja, hogy nem találunk a szakirodalomban olyan tanulmányt, amely vizsgálta volna az egyénre jellemző, mindennapi fizikai aktivitás hatását a láb nyomásviszonyaira.

Szakirodalmi tapasztalataink azt mutatják, hogy a tudomány még mindig keveset ismer a láb változásairól és reakcióiról a mechanikai terheléssel összefüggésben.

4.1 Irodalmi áttekintés

4.1.1 Regionális plantáris nyomást befolyásoló tényezők

Az emberi láb összetett struktúra, számos csont, izom, szalag, synoviális izületek és lágyrészek együttese. Egyetlen szegmentuma az emberi testnek, amely mozgás közben kapcsolatba kerül a talajjal. Jelentős funkciója meghatározza felépítését és biomechanikai működését. Képes alkalmazkodni az egyenetlen felszínhez, kiemelkedő
jelentősége van a percepcióban és a propioceptióból, állandó egyensúlyozó tevékenységével a test stabilan tartásában vesz részt, viseli a testsúlyt. Szerepe döntő a talaj felől érkező állandó egyensúlyozó tevékenységgel a test stabilan tartásában, viseli a testsúlyt. Szellemes, speciális szöveti felépítése – zsírszövet, apponeurosis, izomzat, szalagok rendszere – jelentős befolyásoló tényező a gyalogás energetikájában és dinamikájában. Ezek a szövetek komplex működésükkel átalakítják a talaj felől érkező erőket, ezzel párhuzamosan egy emelő funkciót látnak el a talp gördülése során, a saroktól az ujjakig (Ren és mtsai., 2007; Qian és mtsai., 2010; Ren L. 2008; Tóth és mtsai., 1994).

A regionális plantáris nyomást befolyásoló tényezőkkel kapcsolatban nem teljesen tisztázott, hogy melyek azok a faktorok, amelyek emelik a plantáris nyomásértékeket, mindenesetre mind strukturális, mind funkcionális tényezőknek szerepe lehet a folyamatban (Saltzmann és mtsai., 1994; Cavanagh és mtsai., 1997). A beszűkült aktív és passzív izületi mozgás gyakran megemeli a plantáris nyomást (De Clercq 1994; Fernando és mtsai., 1991). Strukturális elemek, mint a metatarsusok relatív hossza (Fox, 1950), a mediális longitudinalis ív formája (Duckworth és mtsai., 1985), egyes csontok előemelkedése (Habershaw és Donovan, 1984), az ujjak karomállása és a kalapács ujj (Rodgers, 1995) plantáris nyomás mintát befolyásoló hatása ismert, de részletei még nem teljesen tisztázottak. Cavanagh modellje szerint 3-4 statikus struktúra is befolyásolja gyaloglás kor plantáris nyomást, ezek terhelést befolyásoló hatása mintegy 30%-ban a láb hátulsó részén és közel 40%-ban az előlő tereleten érvényesülnek (Cavanagh és mtsai., 1997). A járás „stílusa”, formája, sebessége szintén módosító hatású a talpnyomás viszonyokra (Rodgers, 1985), de a többlet súly viselése is befolyásolja azt. Dinamikus tényezők, mint az izületek kinematikája, az előláb mozgása a korai támaszkodási fázisban, illetve az első metatarso-phalangeális izület mozgása a késői támaszkodási fázisban, meghatározzák járáskor a láb terheléséből fakadó nyomásmintát.

A sarok területén a struktúra, a funkció és az életkor együtt hat a plantáris nyomás értékékre. Anatómiai elemek közül a magas plantáris ív megemeli az inferior calcaneális áthajlást, amely összeüknőgésbe hozható a csúcsnyomás emelkedésével. A plantáris lágycsők vastagsága és mechanikai tulajdonságai csökkenteni képesek a terület nyomásviszonyait. Az életkorral csökken a saroknál észlelt csúcsnyomás, annak ellenére, hogy idős korban megfigyelhető a sarok alatti lágycső réteg elvédikonyodása.

A láb középső területén a talpnyomásra dominánsan a láb-, az ívek struktúrája, a testtömeg és az életkor hat. Az alacsony boltozat a calcaneus áthajlásai (inclináltos) szögét befolyásolja, a nagyobb kontakt terület a magas ivindexszel emeli a csúcsnyomást, míg más meghatározó tényezők, mint a testsúly emeli, de az életkor és a passzív everziós mozgástartomány negatívan befolyásolja azt (Menz és Moris, 2005; Cavanagh és Morag, 1997; Hills és mtsai., 2001).

Az első metatarso-phalangeális izületnél az inferior calcaneális inclinatió szögértéke emeli-, a Chopart izület szögértéke a horizontális síkban a proximális naviculáris felszínnel emeli-, a proximális phalanx tengelye és a horizontális síkkal bezárt szög csökkenti-, a sesam csont és a talaj közötti távolság csökkenti-, a Morton index csökkenti-, a gastrocnemius aktivitás növeli-, a talocrurális izület aktív mozgástartománya és a pes cavus növeli a csúcsnyomást. (Menz és Morris, 2005; Burns és mtsai., 2005; Cavanagh és mtsai., 1997).

A láb felépítése és funkciója megközelítőleg 50%-ban hat a csúcsnyomás értékekre, ugyanakkor a különböző anatómiai régiók nagyon eltérő variánsokat mutathatnak, melyek hatása meghatározó lehet (Morag és Cavanagh, 1999).
talpi régióban kisebb csúcsnyomás értéket észleltek kivéve a kisujj területét, valószínűnek tartják, hogy ebben az életkorban kisebb az erő és a sebesség, amely az előre haladást biztosítja, ennek köszönhetőek az alacsonyabb nyomásértékek.

Az egyre inkább előregedő társadalomban az időskori pedobarográfiai vizsgálatok jelentőségét alátámasztják, hogy irodalmi adatok szerint összefüggés mutatható ki a plantáris nyomás eltérések, időskori lávelváltozások és az elesések gyakorisága között (Menz, 2015).

4.1.3 Nem és a talpnyomás minták kapcsolata

A fellelhető irodalomban kevés vizsgálati adat áll rendelkezésünkre a nemek talpnyomás mintáiról, egyértelmű különbség nem körvonalazódott a női és a férfi talpnyomás eloszlás között.

A férfi és a női nem anatómiailag és fiziológiailag is különbözik egymástól. Jól ismertek a nőkre jellemző tengelyeltérések az alsó végtagon, a szélesebb medence, az anatómiai rövidebb alsővégtag, a nagyobb varus állás csipőben és valgus eltérés a térdben (Dugan, 2005; Frey, 2000; Szuper és mtsai, 2015). Az izomerő és izomaktiváció a nőknél gyengébb az alsó végtagon (Flaxman és mtsai., 2014), lazábbak az alsővégtag izületeik (Uhorhack és mtsai., 2003). A nemek közötti eltérés a láb formáját tekintve is jól dokumentálható, a nőkre magasabb lábboltozat, rövidebb és keskenyebb láb jellemző (Wunderlich és Cavanagh, 2001). Lábuk hajlékonyabb, köszönhetően a magasabb oestrogen és progesteron szintnek (Stebbins és mtsai., 2009). Egyes kutatások a nőknél nagyobb calcaneális eversiót és az előláb fokozottabb varus állását találták, mint a férfiaknál (Xiao és mtsai., 2012). A női lábra nagyobb plantar flexió jellemző a bokaállásban az elrugazódás fázisában, valamint az abductiósn mozgás komponens megnövekedett a férfiakéhoz képest (Reislién és mtsai., 2009, Nigg és mtsai., 2010). Dawson és munkatársai (2002) megfigyeléseik szerint 50-70 év között a láb elváltozások 83%-a nőkön jelentkezik. Ez a megállapítás arra enged következtetni, hogy a nők lába inkább ki van téve a pathológiás változásoknak, ennek egyik lehetséges okaként a magas sarkú cipő viselését tekintik, amely megváltoztatja a láb terhelési viszonyait, struktúráját, különösen megemeli a fájdalom előfordulását, és erősen összefüggésbe hozható a hallux és az ujjak deformitásaival (Dawson és mtsai., 2002). Irodalmi adatok szerint úgy tűnik, hogy a járás és futás kinematikáját
befolyásolják ezek a strukturális és funkcionális különbségek. Női atlétáknál a túlfáradásos sérüléseknek magasabb előfordulását találták, de a mechanizmus még nem teljesen tisztázott (Ferber és mtsai., 2003; Kaufman és mtsai., 1999). A nemei közötti különbségek a talpi nyomásmintákon is megmutatkoznak, lányoknál magasabb terhelés jellemző a hallux alatt és hosszabb a kontakt idő a talp hátsó részén, mint a fiúknál (Ferrari és Watkinson, 2005; Hennig és mtsai., 1994). Magasabb maximális erő értékeket dokumentáltak férfiaknál a legtöbb talp területen, mint nőknél (Zifchock és mtsai., 2006). Tóth Kálmán és munkatársai plusz 10 kg terhelés hatását vizsgálták a lábon. Nőknél magasabbak nyomás értékeket tapasztaltak a hallux alatt, mint férfiaknál, terhelés hatására a növekedés mértéke is nagyobb volt esetükben, mint a férfiaknál. A járásebesség fokozásával férfiaknál az igénybevétel mediál felől centrál felé tolódott el, míg nőknél a mediális terhelés növekedett inkább (Tóth és mtsai., 1994).

Az irodalmi eredmények azt mutatják, hogy a nők és a férfiak mozgásmintáiban a boka és a láb mozgásait illetően is eltérések lehetnek (Chiu és mtsai., 2013). A női és férfi talpnyomás minták között fellengető különbségek az eltérő antropometriai tulajdonságokon kívül a támaskodási fázisban a csípő, térd, boka kissé különböző kinematikájával is magyarázhatóak (Cho és mtsai., 2004; Sadeghi és mtsai., 2000). Az irodalomban található eltérő eredmények azt mutatják, hogy a nemi különbségek hatása a láb három dimenziós mozgására és terhelésének viszonyaira még teljes mélységükben nem ismertek a tudomány előtt.

4.1.4 Fizikai aktivitás és a talpnyomás minták kapcsolata

A fizikai aktivitás befolyását a láb terhelési viszonyaira ez idáig kizárólag sportolókon vizsgálták a láb túlterhelésével összefüggésben, amikor fáradásos sérülések pathomechanizmusát kivánták mélyebben megismerni. Különösen futóknál körülnézés alátámasztja, hogy a fáradásos sérülések egy része miért erre a területre lokalizálódik. A motoros fáradás egy módosult mozgásmintát indukál a járás mintában, ilyenkor a megváltozott izom aktiváció és izom kontrakció képesség mutatható ki elektromyográfiai vizsgálatokkal (Wu és mtsai., 2007; Christina és mtsai., 2001). A fáradásai állapotban csökken a láb és lábszár izületein érvényesülő izomkontroll, valamint képessége és dinamikája az eversiós – inversiós mozgásoknak, amely változások negatívan befolyásolják a láb

Az irodalmi eredményeket összefoglalva megállapíthatjuk, hogy a sporttevékenységből fakadó magas fizikai aktivitásnak kedvezőtlen irányú hatása lehet a lábra és a talpnyomás viszonyokra. A tudomány számára még nem teljesen feltárt, hogy az ismétlődő, ciklikus fizikai aktivitásból fakadó terheléshez a mozgatórendszer hogyan alkalmazkodik. Nem élsportoló, egészséges személyek mindennapi fizikai aktivitásából fakadó terhelési viszonyok módosulását a lábon nem ismerjük. Az átlag populáció nagy
részé nem atléta, a mindennapi fizikai aktivitásból fakadó terhelés feltételezhetően ezen egyének lábán is érvényesül, a magas fizikai aktivitású egyének talpnyomás viszonyai megváltozhatnak. Nem gondoljuk, hogy a mindennapi fizikai aktivitás hatása a fáradásos törések kockázatát fokozná, de lehetségesnek tartjuk, hogy statikai jellegű funkcionális és strukturalis lábelváltozások egyik előidőző tényezője lehet a mindennapi fizikai aktivitásból adódó cumulatív, mechanikai stresszhatás.

4.1.5 BMI és a talpnyomás minták kapcsolata

A testsúly döntő szerepét a láb terhelésére a témával foglalkozó tanulmányok szinte mindegyike hangsúlyozza. Az elhízás, mint önálló betegség kategória jelenik meg a nemzetközi irodalomban (Nwudu és mtsai., 2015). Hatása komplex a láb funkciójára: a szöveti szintű kóros folyamatok, a megváltozott testtartás és járás kinematika, mind befolyásoló tényezőként szerepel, idővel a láb funkcionális majd strukturalis elváltozása következhet be (Hills és mtsai., 2002; Vela és mtsai., 1998; Aurichio és mtsai., 2011; Butterwoth és mtsai., 2015). A láb tartási rendellenességei megjelenhetnek, mint pes planus vagy dinamikus funkcionális pronált lábtartás, amelyeket strukturalis deformitások váltanak fel (Butterworth és mtsai., 2014; Cimolin és mtsai., 2016). Elhízottaknál a boka és a láb elváltozásai közé tartoznak a sarokfájdalom, plantaris fascitis, metatarsalgia, stressz fractura (Wearing és mtsai., 2006).

A népességben az elhízás magas prevalenciája szükségessé teszi hatásának mélyebb vizsgálatát a láb terhelésére és a talpnyomás mintákra. A klinikai gyakorlatban különösen olyan esetekben látjuk jelentőségét, mint pl. a diabeteszes neuropathia és a láb Charcot deformitása, amely esetekben az elhízás további súlyosbító tényezőként szerepel.

4.2 Anyag és módszer

Ugyanazon vizsgált személyek talpnyomás viszonyainak vizsgálatát végeztük, mint amely minta fizikai aktivitás adatait az előző fejezetben ismertettük.

Az életkor és a talpnyomás viszonyok vizsgálatakor a 309 fős elemszámú mintából 251 fő talpnyomás mintáinak az adatfeldolgozását végeztük el. 258 fő talpnyomás felvétele felelt meg a vizsgálati kritériumoknak, adatfelvételi hibából 7 főnek hiányoztak az életkori adatai. A fiatal életkori csoportba (18-29 év; 25,63±2,42 év) 54 fő tartozott, a középkorú csoportba (30-49 év; 39±5,81 év) 143 fő, és az idősebb csoportba (50-65 év; 53,57±2,3 év) 54 fő tartozott (3. sz. melléklet). 502 láb adatait vizsgáltuk meg (3. sz. melléklet).

A nemek és a talpnyomás viszonyok vizsgálatakor a minta nagysága 258 személyt ölelt fel, a vizsgálatban 89 férfi és 169 nő vett részt. Összesen 516 láb vizsgálatát történt (6. sz. melléklet).

A BMI és a talpnyomás viszonyok vizsgálatokor a mintából 250 fő adatai kerültek feldolgozásra. 88 fő tartozott a mérsékelt fizikai aktivitású csoportba (FA I), 162 fő a magas fizikai aktivitású csoportot alkotta (FA II). 8 fő volt inaktiv, akiket kiemelünk a mintából statisztikai értelemben alacsony elemszámuk miatt. 500 láb vizsgálatát végeztük (7. sz. melléklet).

A felmért populáció elemszámát a vizsgált témakörben magasnak és reprezentatívnak tekintjük.
A vizsgálatból kizárásra kerültek azok az egyének, akiknél felmerült a láb minden olyan közvetlen vagy közvetett pathológiás folyamata, amely nem tartozik a statikai lábelváltozások közé: veleszületett láb- vagy alsóvégtag deformitás, diabeteses láb, rheumás láb, bármely pathológiás visszér és ér elváltozások, bármely neurológiai megbetegedés, illetve a lábon vagy alsóvégtagon végzett műtéti beavatkozás és trauma.

4.2.1 Talpnyomás minták vizsgálata

A vizsgálati alanyok mérése, Novel 101B EMED SF típusú komputeres, dinamikus pedobarográfiai történt. A vizsgálathoz 102 H (4 sensor/cm², 50 mérés/s) platformot vagy érzékelő lemezt használtunk. Az úgynevezett „mid-gait” módszer alkalmazását követtük (Harrison és Folland, 1997; Wearing és mtsai, 1999). A platform egy 8m hosszú és 1m széles járdába épített, közepen pozicionált volt, így a járás folyamatában történt a talp adatainak érzékelése (1. sz. kép). A járás dinamikája a méréskor egyenletes volt, irányváltotatás, megtorpanás, lassulás nélküll, ellenkező esetben a járás sebességének változása a talpnyomás értékeket legalább 7%–ban torzíthatja (Hennig és Rosenbaum, 1995). A mérésekre cipő nélkül került sor. Ha a vizsgált alany rosszul lépett, kilépett a lemezről, vagy nem a teljes talpról készült felvétel, a mérés megismételtük. Minden korrekt lépésről, illetve lábról egy felvétel készült. A talpnyomás paraméterek feldolgozása EMED szoftverrel történt.

1.sz. kép.: A dinamikus talpnyomás felvétel folyamata Novel 101B EMED SF típusú érzékelő platformon, a „mid-gait” módszer bemutatása.

A talp régióját 9 maszkra, területre osztottuk: lateralis sarok (LS), medialis sarok (MS), lateralis lábközép (LLK), medialis lábközép (MLK), lateralis metatarsusok (LMT), medialis metatarsusok (MMT), lateralis lábujjak (LU), medialis lábujjak (MU), teljes talp (Total) (1. sz. ábra). Következő paraméterek vizsgálata történt a maszkokon.
belül: kontakt terület (cm²; %), csúcscsúcs-nyomás (N/cm²), maximális erő (N), kontakt idő (ms; %), nyomás-idő integrált mennyisége (Ns/cm²). A kontakt terület és a kontakt idő talptrületenkénti százalékos megoszlásával történt az értékelés, a 100%-ot a teljes talpra vonatkoztatott értékek jelentik. A maximális erő normalizálva lett a testsúlyhoz minden esetben, illetve a kontakt terület és idő a teljes kontakt területhez.

1.sz. ábra: A talp vizsgált nyolc területe. (laterális sarok=LS; mediális sarok= MS; laterális lábközép=LL; mediális lábközép=ML; laterális metatarsusok=LM; mediális metatarsusok=MM;laterális ujjak=LU; mediális ujjak=MU)

4.2.2 Adatelemzési módszer

A különböző vizsgálati csoportok plantáris nyomásmintáinak összehasonlítására és az összeteffősegek feltárására egyutas variancia-analízist és kétmintás t-próbát alkalmaztunk (a csoportszámoktól függően). A különböző fizikai aktivitású-, BMI-, nem és életkori csoportok között a szignifikáns különbségek megállapítása post-hoc teszttel történt. Az adatok feldolgozását SPSS 20.00 programmal végeztük. Az elemzések során a p<0,05 szignifikancia érték esetén vetettük el a függetlenséget feltételező nullhipotézist.

1 Minden esetben megneztük a csoportok összehasonlítását a megfelelő nemparaméteres próbával is, az előfélészetek sérülései miatt, és mivel egybeesengő eredményeket kaptunk, ezért mindenhol a variancia-analízis és a kétmintás t-próba eredményeit tüntettük fel.
4.3 Eredmények

4.3.1 Életkor és a talpnyomás minták vizsgálata

Nyomás-idő integrált értéke

A teljes talpterületen (p=0.026; 7,5%) és a láb középső, laterális területén (p=0.006; 21%) legmagasabb a középkorúak és a fiatalok között a különbség, a középkorúaknál nagyobb értékekkel. A mediális lábközép régiójában az életkorral növekednek az értékek, legmagasabb az idős korosztálynál és legkisebb a fiataloknál, a különbség: (p<0,001; 25%). A laterális metatarsusok legkevésbé az idős korosztályban terheltek a középkorúakhoz képest (p=0,020; 9,3%). A laterális ujjak szignifikánsan nagyobb mértékben terheltek az idős (p=0,042; 20%) és a középkorosztályban (p=0,024; 18%) mint a fiataloknál. A mediális ujjaknál szintén a középkorúak értékei magasabbak a fiatalokéhoz képest (p=0,012; 17%). (6. sz. táblázat; 4. sz. melléklet)

Kontakt idő

A teljes talpterületen az idős és a középkorú csoportnak is szignifikánsan magasabb az értéke, mint a fiatal csoportnak (p<0,001; 7%; p<0,001; 6%). A laterális saroknál (p=0,010; 5,5%) az idős csoportban találunk magasabb értéket a középkorúakhoz képest, és a mediális lábközép területén szintén az idős csoportban találunk magasabb értéket a fiatalhoz képest (p=0,002; 10%). A laterális metatarsusoknál az időseknél (p=0,018; 2%) és fiataloknál (p=0,031; 2%) magasabb a kontakt idő értéke a középkorúakhoz képest. (6. sz. táblázat; 4. sz. melléklet)
6.sz. táblázat: Nyomás-idő integral értéke, Kontakt idő átlag értékei a három életkor csoportban (F, K, I) kilenc talpterületen. Szignifikáns különbségek ábrázolása. (n=251) (LS= laterális sarok, MS= mediális sarok, LLK=laterális lábközép, MLK=mediális lábközép, LMT= laterális metatarsus, MMT=mediális metatarsus, LU=laterális ujjak, MU=mediális ujjak.)

<table>
<thead>
<tr>
<th></th>
<th>Fiatal (n=54)</th>
<th>Középkorú (n=143)</th>
<th>Idős (n=54)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atlag</td>
<td>Szórás</td>
<td>Atlag</td>
<td>Szórás</td>
</tr>
<tr>
<td>Nyomás-idő integrál (Ns/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35,8</td>
<td>9,3</td>
<td>38,5</td>
<td>10,6</td>
</tr>
<tr>
<td>LS</td>
<td>8,2</td>
<td>2,5</td>
<td>8,6</td>
<td>3,0</td>
</tr>
<tr>
<td>MS</td>
<td>10,8</td>
<td>3,2</td>
<td>10,6</td>
<td>3,4</td>
</tr>
<tr>
<td>LLK</td>
<td>7,7</td>
<td>4,5</td>
<td>9,3</td>
<td>5,7</td>
</tr>
<tr>
<td>MLK</td>
<td>5,0</td>
<td>2,5</td>
<td>5,7</td>
<td>2,5</td>
</tr>
<tr>
<td>LMT</td>
<td>19,8</td>
<td>6,9</td>
<td>20,1</td>
<td>7,4</td>
</tr>
<tr>
<td>MMT</td>
<td>22,9</td>
<td>8,6</td>
<td>23,9</td>
<td>9,1</td>
</tr>
<tr>
<td>LU</td>
<td>7,3</td>
<td>4,4</td>
<td>8,6</td>
<td>5,3</td>
</tr>
<tr>
<td>MU</td>
<td>19,9</td>
<td>9,9</td>
<td>23,3</td>
<td>12,2</td>
</tr>
<tr>
<td>Kontakt idő (s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>799,4</td>
<td>89,3</td>
<td>849,7</td>
<td>121,8</td>
</tr>
<tr>
<td>LS</td>
<td>49,1</td>
<td>8,5</td>
<td>48,6</td>
<td>9,2</td>
</tr>
<tr>
<td>MS</td>
<td>52,7</td>
<td>8,6</td>
<td>51,6</td>
<td>9,3</td>
</tr>
<tr>
<td>LLK</td>
<td>68,5</td>
<td>9,0</td>
<td>68,9</td>
<td>10,4</td>
</tr>
<tr>
<td>MLK</td>
<td>53,3</td>
<td>12,4</td>
<td>56,0</td>
<td>12,2</td>
</tr>
<tr>
<td>LMT</td>
<td>85,2</td>
<td>4,8</td>
<td>83,8</td>
<td>6,2</td>
</tr>
<tr>
<td>MMT</td>
<td>83,0</td>
<td>5,3</td>
<td>82,0</td>
<td>6,3</td>
</tr>
<tr>
<td>LU</td>
<td>72,4</td>
<td>10,6</td>
<td>72,5</td>
<td>10,8</td>
</tr>
<tr>
<td>MU</td>
<td>79,8</td>
<td>8,1</td>
<td>80,7</td>
<td>8,6</td>
</tr>
</tbody>
</table>

Kontakt terület
A teljes talpon a kontakt terület a középkorú csoportnál szignifikánsan magasabb a fiatalok csoportjához viszonyítva (p=0,016, 3%). Nagyobb a kontakt terület a mediális saroknál a fiatal csoportban, mint a középkorú (p=0,025; 3%; p=0,026; 4%) vagy az időscsoportban. A fiatal csoportban nagyobb a kontakt terület a laterális metatarsusnál, mint az idős életkori csoportban (p=0,03;3,5%). A láb középső, mediális területén az idősekknél és középkorúaknál nagyobb értékeket találunk a fiatalokhoz képest (p=0,044;13%; p=0,030;12%). A laterális metatarsusoknál megfordul ez a tendencia és a fiataloknál nagyobbak az értékek az idősekhez (p=0,030; 4%) és a középkorúakhoz (p=0,028; 3%) viszonyítva. (7. sz. táblázat; 5. sz. melléklet)

Csúcsnyomás
A csúcsnyomás értéke a mediális saroknál szignifikánsan alacsonyabb a fiatalok csoportban (p=0,003; 11%) és a középkorú (p=0,027; 7%) csoportban képest. A laterális lábközép területén kisebb értékeket találunk az idősekknél a középkorúakhoz képest (p=0,010; 17%) és a fiataloknál a középkorúakhoz képest (p=0,020; 17,5%). A laterális metatarsusoknál a fiataloknál szignifikánsan magasabb a csúcsnyomás értéke,
mint az idősebbknél (p=0,012; 12,5%), valamint a középkorúaknál is magasabb, mint az időseknél (p=0,029; 9%). (7. sz. táblázat; 5. sz. melléklet)

Maximális erő

Az egész talpterületen a maximális erő értéke a fiatal csoportnál szignifikánsan magasabb, mint az idős csoportnál (p=0,029; 2,5%). A mediális saroknál a fiatal csoportnak magasabb az értéke, mint a középkorú (p=0,028) vagy idős csoportnak (p=0,02; 8%). A láb középső, laterális területén a középkorú csoportnál magasabb az érték, mint a fiatal csoportban (p=0,030; 13,5%). A laterális metatarsusoknál az idős csoportban a legalacsonyabb a maximális erő értéke a fiatal (p=0,014; 9%) és a középkorú (p=0,018; 7,5%) csoporthoz képest. A mediális metatarsusoknál az idős (p=0,001; 8%) és a fiatal csoportnál (p=0,015; 5,5%) is megnövekedett értékek jellemzőbbek, mint a középkorúaknál. A középkorú csoportnál szignifikánsan magasabb a mediális ujjaknál a maximális erő értéke, mint a fiataloknál (p=0,004; 10,5%). (7. sz. táblázat; 5. sz. melléklet)

7. sz. táblázat: Kontakt terület, Csúcsnyomás, Maximális erő eloszlása kilenc talpi régióban a három életkor csoportban (F, K, I). Szignifikáns különbségek jelölése. (n=251) (LS= laterális sarok, MS= mediális sarok, LLK=laterális lábközép, MLK=mediális lábközép, LMT=laterális metatarsus, MMT= mediális metatarsus, LU=laterális ujjak, MU=mediális ujjak)

<table>
<thead>
<tr>
<th></th>
<th>Fiatal (n=54)</th>
<th>Középkorú (n=143)</th>
<th>Idős (n=54)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atlag</td>
<td>Szórás</td>
<td>Atlag</td>
<td>Szórás</td>
</tr>
<tr>
<td>Kontakt terület (cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,3</td>
<td>0,4</td>
<td>3,4</td>
<td>0,0</td>
</tr>
<tr>
<td>LS</td>
<td>6,8</td>
<td>2,2</td>
<td>6,9</td>
<td>2,1</td>
</tr>
<tr>
<td>MS</td>
<td>17,1</td>
<td>2,9</td>
<td>16,5</td>
<td>2,1</td>
</tr>
<tr>
<td>LLK</td>
<td>16,0</td>
<td>4,5</td>
<td>16,9</td>
<td>3,7</td>
</tr>
<tr>
<td>MLK</td>
<td>7,4</td>
<td>3,7</td>
<td>8,3</td>
<td>3,4</td>
</tr>
<tr>
<td>LMT</td>
<td>15,1</td>
<td>2,0</td>
<td>14,7</td>
<td>1,7</td>
</tr>
<tr>
<td>MMT</td>
<td>19,4</td>
<td>2,4</td>
<td>18,9</td>
<td>2,2</td>
</tr>
<tr>
<td>LU</td>
<td>4,7</td>
<td>1,6</td>
<td>4,4</td>
<td>1,4</td>
</tr>
<tr>
<td>MU</td>
<td>14,2</td>
<td>2,0</td>
<td>14,0</td>
<td>1,8</td>
</tr>
<tr>
<td>Csúcsnyomás (N/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>81,8</td>
<td>20,6</td>
<td>85,8</td>
<td>22,5</td>
</tr>
<tr>
<td>LS</td>
<td>35,2</td>
<td>9,6</td>
<td>34,5</td>
<td>8,9</td>
</tr>
<tr>
<td>MS</td>
<td>45,3</td>
<td>12,5</td>
<td>43,4</td>
<td>12,2</td>
</tr>
<tr>
<td>LLK</td>
<td>22,3</td>
<td>12,6</td>
<td>26,2</td>
<td>17,4</td>
</tr>
<tr>
<td>MLK</td>
<td>19,6</td>
<td>7,6</td>
<td>20,6</td>
<td>6,3</td>
</tr>
<tr>
<td>LMT</td>
<td>55,3</td>
<td>20,2</td>
<td>53,3</td>
<td>21,1</td>
</tr>
<tr>
<td>MMT</td>
<td>69,1</td>
<td>22,3</td>
<td>68,5</td>
<td>23,7</td>
</tr>
<tr>
<td>LU</td>
<td>24,6</td>
<td>13,7</td>
<td>26,8</td>
<td>14,3</td>
</tr>
<tr>
<td>MU</td>
<td>62,7</td>
<td>25,2</td>
<td>69,2</td>
<td>27,0</td>
</tr>
<tr>
<td>Maximális erő (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16,4</td>
<td>1,3</td>
<td>16,3</td>
<td>1,4</td>
</tr>
<tr>
<td>LS</td>
<td>1,9</td>
<td>1,0</td>
<td>1,9</td>
<td>0,9</td>
</tr>
<tr>
<td>MS</td>
<td>7,1</td>
<td>1,4</td>
<td>6,8</td>
<td>1,4</td>
</tr>
<tr>
<td>LLK</td>
<td>2,3</td>
<td>1,2</td>
<td>2,6</td>
<td>1,3</td>
</tr>
<tr>
<td>MLK</td>
<td>1,1</td>
<td>0,7</td>
<td>1,2</td>
<td>0,7</td>
</tr>
<tr>
<td>LMT</td>
<td>4,8</td>
<td>1,2</td>
<td>4,7</td>
<td>1,4</td>
</tr>
<tr>
<td>MMT</td>
<td>7,5</td>
<td>1,4</td>
<td>7,0</td>
<td>1,5</td>
</tr>
<tr>
<td>LU</td>
<td>0,6</td>
<td>0,4</td>
<td>0,7</td>
<td>0,4</td>
</tr>
<tr>
<td>MU</td>
<td>4,0</td>
<td>1,3</td>
<td>4,3</td>
<td>1,4</td>
</tr>
</tbody>
</table>
4.3.2 Nemek és a talpyomás minták vizsgálata

Nyomás-idő integrált értéke

Ez a paraméter a láb középső, mediális területén mutat szignifikánsan nagyobb értéket a nőknél (p=0,017; 9,77%). A laterális metatarsusoknál pedig a férfiaknál találunk nagyobb értéket (p=0,009; 9,06%). (8.sz. táblázat)

Kontakt idő

A nőknél jegyezhető magasabb érték a mediális lábközép területén (p=0,008; 5%) (8.sz. táblázat).

8.sz. táblázat: Nyomás-idő integrál értéke, Kontakt idő eloszlása kilenc talpi régióban férfiaknál és nőknél. Szignifikáns különbségek jelölése (n=258) (LS= laterális sarok, MS= mediális sarok, LLK=laterális lábközép, MLK=mediális lábközép, LMT=laterális metatarsus, MMT=mediális metatarsus, LU=laterális ujjak, MU=mediális ujjak.)

<table>
<thead>
<tr>
<th>Nyomás-idő integrál (Ns/cm²)</th>
<th>Férfi (n=89)</th>
<th>Nő (n=169)</th>
<th>p</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>Szórás</td>
<td>Átlag</td>
<td>Szórás</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>38,6</td>
<td>10,9</td>
<td>37,5</td>
<td>10,5</td>
</tr>
<tr>
<td>LS</td>
<td>8,7</td>
<td>2,8</td>
<td>8,5</td>
<td>2,9</td>
</tr>
<tr>
<td>MS</td>
<td>10,8</td>
<td>3,3</td>
<td>10,7</td>
<td>3,3</td>
</tr>
<tr>
<td>LLK</td>
<td>9,2</td>
<td>5,3</td>
<td>8,5</td>
<td>5,2</td>
</tr>
<tr>
<td>MLK</td>
<td>5,3</td>
<td>2,2</td>
<td>5,9</td>
<td>2,8</td>
</tr>
<tr>
<td>LMT</td>
<td>20,8</td>
<td>6,1</td>
<td>19,1</td>
<td>7,7</td>
</tr>
<tr>
<td>MMT</td>
<td>24,4</td>
<td>8,5</td>
<td>23,7</td>
<td>9</td>
</tr>
<tr>
<td>LU</td>
<td>8,2</td>
<td>5,9</td>
<td>8,4</td>
<td>4,7</td>
</tr>
<tr>
<td>MU</td>
<td>23</td>
<td>12,7</td>
<td>22</td>
<td>11,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontakt idő (s)</th>
<th>Férfi (n=89)</th>
<th>Nő (n=169)</th>
<th>p</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>835,2</td>
<td>113,6</td>
<td>844</td>
<td>116,9</td>
</tr>
<tr>
<td>LS</td>
<td>49,5</td>
<td>9,8</td>
<td>49,4</td>
<td>9,1</td>
</tr>
<tr>
<td>MS</td>
<td>52,1</td>
<td>9,9</td>
<td>52,4</td>
<td>9,1</td>
</tr>
<tr>
<td>LLK</td>
<td>70</td>
<td>9,3</td>
<td>68,3</td>
<td>10,1</td>
</tr>
<tr>
<td>MLK</td>
<td>54</td>
<td>11,9</td>
<td>57</td>
<td>12,3</td>
</tr>
<tr>
<td>LMT</td>
<td>85,1</td>
<td>5,1</td>
<td>84,2</td>
<td>6</td>
</tr>
<tr>
<td>MMT</td>
<td>82,7</td>
<td>5,3</td>
<td>82,3</td>
<td>6,4</td>
</tr>
<tr>
<td>LU</td>
<td>72,2</td>
<td>10,7</td>
<td>73,1</td>
<td>11,2</td>
</tr>
<tr>
<td>MU</td>
<td>80,5</td>
<td>7,1</td>
<td>80,8</td>
<td>8,7</td>
</tr>
</tbody>
</table>

Kontakt terület

A kontakt terület a teljes talpon mutatott szignifikánsan magasabb értéket a férfiaknál (p<0,001; 6%), a lábközép laterális területén (p=0,012; 5,5%) és a laterális metatarsusoknál (p=0,002; 4%) szintén. A mediális lábközép (p=0,012; 10%) és a mediális ujjak (p=0,003; 3,5%) területén a nőknél találunk szignifikánsan magasabb értékeket. (9.sz. táblázat)
Csúcsnyomás

A sarok laterális területen a férfiaknál mutat a csúcsnyomás szignifikánsan magasabb értéket (p=0,043; 5%). A talp többi régiójában nem található jelentős különbség a két nem között. (9.sz. táblázat)

Maximális erő

A legtöbb talpterületen szignifikánsan magasabb értékeket mutat a maximális erő a nőknél. Így a teljes talpterületen (p<0,001), a mediális saroknál (p<0,001; 5%), a láb középső, mediális részén (p=0,003; 15%), a mediális metatarsusoknál (p<0,001; 7%), és a laterális (p=0,037; 14%) és mediális ujjaknál (p<0,001; 7%) (9. sz. táblázat).

9.sz. táblázat: Kontakt terület, Csúcsnyomás, Kontakt terület eloszlása kilenc talpi régióban férfiaknál és nőknél, szignifikáns különbségek jelölése (n=258), (LS= laterális sarok, MS= mediális sarok, LLK= laterális lábközép, MLK=mediális lábközép, LMT= laterális metatarsus, MMT=mediális metatarsus, LU= laterális ujjak, MU=mediális ujjak.)

<table>
<thead>
<tr>
<th></th>
<th>Férfi n=89</th>
<th>Nő n=169</th>
<th>p</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontakt terület (cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35,5</td>
<td>35,5</td>
<td>0,043</td>
<td>4,1</td>
</tr>
<tr>
<td>LS</td>
<td>7,0</td>
<td>7,0</td>
<td>0,61</td>
<td>0,26</td>
</tr>
<tr>
<td>MS</td>
<td>16,7</td>
<td>16,7</td>
<td>0,52</td>
<td>0,41</td>
</tr>
<tr>
<td>LLK</td>
<td>17,3</td>
<td>17,3</td>
<td>0,002</td>
<td>10,0</td>
</tr>
<tr>
<td>MLK</td>
<td>7,6</td>
<td>7,6</td>
<td>0,012</td>
<td>6,4</td>
</tr>
<tr>
<td>LMT</td>
<td>15,1</td>
<td>15,1</td>
<td>0,043</td>
<td>4,1</td>
</tr>
<tr>
<td>LU</td>
<td>4,4</td>
<td>4,4</td>
<td>0,58</td>
<td>0,31</td>
</tr>
<tr>
<td>Total</td>
<td>84,3</td>
<td>84,3</td>
<td>0,677</td>
<td>0,17</td>
</tr>
<tr>
<td>Csúcsnyomás (N/cm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50,2</td>
<td>50,2</td>
<td>0,009</td>
<td>7,0</td>
</tr>
<tr>
<td>LS</td>
<td>9,0</td>
<td>9,0</td>
<td>0,411</td>
<td>0,68</td>
</tr>
<tr>
<td>MS</td>
<td>43,7</td>
<td>43,7</td>
<td>0,386</td>
<td>0,3</td>
</tr>
<tr>
<td>LLK</td>
<td>25,3</td>
<td>25,3</td>
<td>0,377</td>
<td>0,78</td>
</tr>
<tr>
<td>MLK</td>
<td>20,4</td>
<td>20,4</td>
<td>0,579</td>
<td>0,31</td>
</tr>
<tr>
<td>LMT</td>
<td>54,2</td>
<td>54,2</td>
<td>0,260</td>
<td>1,3</td>
</tr>
<tr>
<td>MMT</td>
<td>67,6</td>
<td>67,6</td>
<td>0,293</td>
<td>1,1</td>
</tr>
<tr>
<td>LU</td>
<td>25,8</td>
<td>25,8</td>
<td>0,588</td>
<td>0,29</td>
</tr>
<tr>
<td>Total</td>
<td>68,7</td>
<td>68,7</td>
<td>0,312</td>
<td>1,0</td>
</tr>
<tr>
<td>Maximális erő (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15,9</td>
<td>15,9</td>
<td><0,001</td>
<td>30,8</td>
</tr>
<tr>
<td>LS</td>
<td>1,9</td>
<td>1,9</td>
<td>0,411</td>
<td>0,68</td>
</tr>
<tr>
<td>MS</td>
<td>6,6</td>
<td>6,6</td>
<td>0,109</td>
<td>2,6</td>
</tr>
<tr>
<td>LLK</td>
<td>2,7</td>
<td>2,7</td>
<td>0,063</td>
<td>8,8</td>
</tr>
<tr>
<td>LMT</td>
<td>4,7</td>
<td>4,7</td>
<td>0,292</td>
<td>1,1</td>
</tr>
<tr>
<td>LU</td>
<td>0,6</td>
<td>0,6</td>
<td>0,004</td>
<td>8,5</td>
</tr>
<tr>
<td>Total</td>
<td>3,9</td>
<td>3,9</td>
<td>0,014</td>
<td>6,0</td>
</tr>
</tbody>
</table>

4.3.3 Fizikai aktivitás és a talpnyomás minták vizsgálata

Kontakt idő

A FAII csoportban szignifikánsan magasabb értékeket mutatott a kontakt idő a mediális sarok területén (p=0,033; 4%), a laterális lábközépnél (p<0,001; 5%), a
laterális metatarsusoknál (p=0,019; 1,5%) és a mediális metatarsusok területén (p=0,022; 1,6%) az FAI csoporthoz képest (10. sz. táblázat).

Nyomás-idő integrál értéke

Szignifikánsan magasabb a pressure-time integrál értéke az FAII csoportban a láb középső, laterális területén (p<0,001; 25%), a mediális lábközépnel (p=0,004; 13%), a laterális metatarsusok (p=0,005; 10%) és a mediális metatarsusok területén (p=0,022; 8%) (10. sz. táblázat).

10.sz. táblázat: Nyomás-idő integrál értéke, Kontakt idő eloszlása a két különböző fizikai aktivitású csoportban, kilenc talpterületen. S zigñifikáns különbségek jelölése. A százalékos különbségeknél az FA II csoport adatait hasollítottuk az FA I-hez. (n=250) (LS= laterális sarok, MS= mediális sarok, LLK= laterális lábközép, MLK= mediális lábközép, LMT= laterális metatarsus, MMT= mediális metatarsus, LU= laterális ujjak, MU= mediális ujjak)

Mérsékelt fizikai aktivitás (FA I)
<table>
<thead>
<tr>
<th>Mérésével fizikai aktivitás (FA I)</th>
<th>Magas fizikai aktivitás (FA II)</th>
<th>p</th>
<th>F</th>
<th>Különbség (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>36,97</td>
<td>38,37</td>
<td>0,159</td>
<td>1,989</td>
</tr>
<tr>
<td>LS</td>
<td>8,19</td>
<td>8,68</td>
<td>0,070</td>
<td>3,290</td>
</tr>
<tr>
<td>MS</td>
<td>10,41</td>
<td>10,86</td>
<td>0,149</td>
<td>2,087</td>
</tr>
<tr>
<td>LLK</td>
<td>7,51</td>
<td>9,39</td>
<td>0,004</td>
<td>14,948</td>
</tr>
<tr>
<td>MLK</td>
<td>5,27</td>
<td>5,97</td>
<td>0,005</td>
<td>7,787</td>
</tr>
<tr>
<td>LMT</td>
<td>18,48</td>
<td>20,36</td>
<td>0,004</td>
<td>8,408</td>
</tr>
<tr>
<td>MMT</td>
<td>22,48</td>
<td>24,54</td>
<td>0,022</td>
<td>5,256</td>
</tr>
<tr>
<td>LU</td>
<td>8,9</td>
<td>8,03</td>
<td>0,071</td>
<td>3,284</td>
</tr>
<tr>
<td>MU</td>
<td>22,74</td>
<td>22,12</td>
<td>0,070</td>
<td>3,032</td>
</tr>
</tbody>
</table>

Kontakt idő (%)

<table>
<thead>
<tr>
<th>Kontakt terület</th>
<th>Total</th>
<th>116,54</th>
<th>837,1</th>
<th>115,11</th>
<th>0,364</th>
<th>0,825</th>
<th>-1,16%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>48,33</td>
<td>49,85</td>
<td>9,71</td>
<td>0,082</td>
<td>3,032</td>
<td>3,15%</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>50,99</td>
<td>52,86</td>
<td>9,63</td>
<td>0,033</td>
<td>4,554</td>
<td>3,67%</td>
<td></td>
</tr>
<tr>
<td>LLK</td>
<td>66,67</td>
<td>69,99</td>
<td>10,06</td>
<td>0,000</td>
<td>13,019</td>
<td>4,98%</td>
<td></td>
</tr>
<tr>
<td>MLK</td>
<td>54,74</td>
<td>56,64</td>
<td>12,38</td>
<td>0,097</td>
<td>2,769</td>
<td>3,47%</td>
<td></td>
</tr>
<tr>
<td>LMT</td>
<td>83,7</td>
<td>84,95</td>
<td>5,07</td>
<td>0,019</td>
<td>5,569</td>
<td>1,49%</td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>81,59</td>
<td>82,87</td>
<td>5,52</td>
<td>0,022</td>
<td>2,311</td>
<td>1,57%</td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>73,5</td>
<td>72,26</td>
<td>11,15</td>
<td>0,232</td>
<td>1,430</td>
<td>-1,69%</td>
<td></td>
</tr>
<tr>
<td>MU</td>
<td>81,07</td>
<td>80,31</td>
<td>8,08</td>
<td>0,315</td>
<td>1,012</td>
<td>0,94%</td>
<td></td>
</tr>
</tbody>
</table>

Kontakt terület

A kontakt terület az egész lábon szignifikánsan magasabb volt a FAII csoportban (p<0,001; 4%). A laterális ujjak területén a kontakt terület alacsonyabb volt a FAII csoportban (p=0,002; 8,5%), a mediális ujjak területén szintén (p=0,015; 3%) (11. sz. táblázat).

Csúcsnyomás

A csúcsnyomás szignifikánsan magasabb értékeket mutat a FAII csoportnál a láb középső, laterális területén (p=0,002; 20,5%) és a mediális lábközép területén 10,75%-al (p=0,001; 11%), de a laterális metatarsusoknál is (p=0,016; 9%) (11. sz. táblázat).
Maximális erő

A maximális erő az egész lábon szignifikánsan alacsonyabb az FAII csoportban (p=0,003; 2%), a laterális ujjak területén (p<0,001; 18%) és mediális ujjaknál (p<0,001; 11,5%) szintén a FAIL. csoportnál jegyeztünk alacsonyabb értéket (11. sz. táblázat).

11.sz. táblázat: Kontakt terület, Csúcsnyomás, Maximális erő eloszlása a két fizikai aktitású csoportban, kilenc talpi régióban. Szignifikáns különbségek jelölése. A százalékos különbségeknél az FA II csoport adatait haszolítottuk az FA I-hez. (n=250) (LS= laterális sarok, MS= mediális sarok, LLK=laterális lábközép, MLK=mediális lábközép, LMT=laterális metatarsus, MMT=mediális metatarsus, LU=laterális ujjak, MU=mediális ujjak.)

<table>
<thead>
<tr>
<th>Mérsékelt fizikai aktivitás (FA I)</th>
<th>Magas fizikai aktivitás (FA II)</th>
<th>Különbség</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag</td>
<td>Szórás</td>
<td>Átlag</td>
</tr>
<tr>
<td>Kontakt terület (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,24</td>
<td>0,32</td>
</tr>
<tr>
<td>LS</td>
<td>7,00</td>
<td>2,2</td>
</tr>
<tr>
<td>MS</td>
<td>16,46</td>
<td>2,37</td>
</tr>
<tr>
<td>LLK</td>
<td>16,38</td>
<td>3,69</td>
</tr>
<tr>
<td>MLK</td>
<td>7,97</td>
<td>3,52</td>
</tr>
<tr>
<td>LMT</td>
<td>14,76</td>
<td>1,78</td>
</tr>
<tr>
<td>MMT</td>
<td>19,1</td>
<td>2,16</td>
</tr>
<tr>
<td>LU</td>
<td>4,72</td>
<td>1,3</td>
</tr>
<tr>
<td>MU</td>
<td>14,25</td>
<td>1,81</td>
</tr>
<tr>
<td>Csúcs – nyomás (N/cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>83,59</td>
<td>22,08</td>
</tr>
<tr>
<td>LS</td>
<td>33,55</td>
<td>9,24</td>
</tr>
<tr>
<td>MS</td>
<td>42,81</td>
<td>12,5</td>
</tr>
<tr>
<td>LLK</td>
<td>21,63</td>
<td>12,56</td>
</tr>
<tr>
<td>MLK</td>
<td>18,97</td>
<td>6,52</td>
</tr>
<tr>
<td>LMT</td>
<td>49,93</td>
<td>20,28</td>
</tr>
<tr>
<td>MMT</td>
<td>66,29</td>
<td>21,58</td>
</tr>
<tr>
<td>LU</td>
<td>27,98</td>
<td>13,62</td>
</tr>
<tr>
<td>MU</td>
<td>67,68</td>
<td>27,25</td>
</tr>
<tr>
<td>Maximális erő (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16,51</td>
<td>1,57</td>
</tr>
<tr>
<td>LS</td>
<td>2,02</td>
<td>0,95</td>
</tr>
<tr>
<td>MS</td>
<td>6,96</td>
<td>1,43</td>
</tr>
<tr>
<td>LLK</td>
<td>2,43</td>
<td>1,27</td>
</tr>
<tr>
<td>MLK</td>
<td>1,09</td>
<td>0,72</td>
</tr>
<tr>
<td>LMT</td>
<td>4,61</td>
<td>1,35</td>
</tr>
<tr>
<td>MMT</td>
<td>7,32</td>
<td>1,57</td>
</tr>
<tr>
<td>LU</td>
<td>0,73</td>
<td>0,36</td>
</tr>
<tr>
<td>MU</td>
<td>4,44</td>
<td>1,38</td>
</tr>
</tbody>
</table>

4.3.4 BMI és a talpnyomás minták vizsgálata

Kontakt idő

A kontakt idő megnövekedett az elhízottaknál az alábbi területeken, laterális sarok (p<0,001; 10%), mediális sarok (p<0,001; 10%), láb középső területén, mediálisan
(p<0.001; 16%), laterálisan (p<0.001; 10%), mediális metatarsusok területén (p=0.005; 2.5%) (12. sz. táblázat).

Nyomás-idő integrál értéke

Ez az érték az ujjak kivételével minden talpterületen szignifikáns mértékben megemelkedett az elhízottaknál, legjelentősebben a láb középső régiójában mediálisan (p<0.001; 44%), laterálisan (p<0.001; 42.5%) (12. sz. táblázat).

12. sz. táblázat: Leíró statisztika és kétnézet t-próba eredményei a különböző talpnyomás mutatókon (Kontakt idő, Nyomás-idő integrál) BMI kategóriák szerint (normál – elhízott), kilenc talpterületen. A százalékos különbségeknél az elhízottak adatait hasonlítottuk a normál értékekhez. Szignifikáns különbségek jelölése. (n=180) (LS= laterális sarok, MS= mediális sarok, LLK= laterális lábközép, MLK= mediális lábközép, LMT= laterális metatarsus, MMT= mediális metatarsus, LU= laterális ujjak, MU= mediális ujjak)

<table>
<thead>
<tr>
<th></th>
<th>Normál BMI kategória</th>
<th>Elhízott BMI kategória</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=142)</td>
<td>(n=38)</td>
</tr>
<tr>
<td></td>
<td>Átlag</td>
<td>Szórás</td>
</tr>
<tr>
<td>Kontakt idő (s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100,0</td>
<td>0,00</td>
</tr>
<tr>
<td>LS</td>
<td>47,9</td>
<td>9,3</td>
</tr>
<tr>
<td>MS</td>
<td>50,8</td>
<td>9,3</td>
</tr>
<tr>
<td>LLK</td>
<td>66,5</td>
<td>10,2</td>
</tr>
<tr>
<td>MLK</td>
<td>53,1</td>
<td>12,0</td>
</tr>
<tr>
<td>LMT</td>
<td>84,2</td>
<td>6,3</td>
</tr>
<tr>
<td>MMT</td>
<td>81,8</td>
<td>6,4</td>
</tr>
<tr>
<td>LU</td>
<td>72,6</td>
<td>11,3</td>
</tr>
<tr>
<td>MU</td>
<td>80,7</td>
<td>8,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nyomás –idő integrál (Ns/cm²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=142)</td>
<td>(n=38)</td>
</tr>
<tr>
<td></td>
<td>Átlag</td>
<td>Szórás</td>
</tr>
<tr>
<td>Kontakt terület</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>36,1</td>
<td>9,4</td>
</tr>
<tr>
<td>LS</td>
<td>7,8</td>
<td>2,7</td>
</tr>
<tr>
<td>MS</td>
<td>10,3</td>
<td>3,2</td>
</tr>
<tr>
<td>LLK</td>
<td>7,2</td>
<td>4,7</td>
</tr>
<tr>
<td>MLK</td>
<td>4,6</td>
<td>2,0</td>
</tr>
<tr>
<td>LMT</td>
<td>18,4</td>
<td>6,9</td>
</tr>
<tr>
<td>MMT</td>
<td>22,2</td>
<td>8,0</td>
</tr>
<tr>
<td>LU</td>
<td>8,0</td>
<td>4,6</td>
</tr>
<tr>
<td>MU</td>
<td>21,2</td>
<td>10,6</td>
</tr>
</tbody>
</table>

Kontakt terület

A kontakt terület adatok a total talp területen (p<0.001; 9%) és a középső talp területen szignifikánsan nagyobb értékeket mutattattak az elhízott csoportban (lat.: p<0.001; 10%; med.: p<0.001; 24%), míg szignifikánsan alacsonyabb értékeket a mediális saroknál, a láb elülső részén és az ujjak területén (p<0.05) találtunk. (13. sz. táblázat).
Csúcsnyomás

A csúcsnyomás a totál talpterület alatt szignifikánsan nagyobb volt az elhízott csoportban, mint a normál súlyú csoportban (p=0,009; 8,5%). A láb középső területén (lat.:p<0,001; 33,5%, med.:p<0,001; 34%) és a metatarsusoknál (lat.: p<0,001; 22,5%, med.: p<0,001; 15%) szintén nagyobb csúcsnyomást rögzítettünk az elhízott egyéneknél. Szignifikánsan nagyobb terhelést mértünk az elhízott csoportban a sarok laterális területén (p<0,001; 17,5%) (13.sz. táblázat).

Maximális erő

A maximális erő értékek tekintetében a láb középső területén és az ujjaknál találtunk szignifikáns különbségeket. Elhízottaknál a láb középső területén nagyobb (lat.:p<0,001; 22%, med.:p<0,001; 31%) az ujjaknál jelentősen kisebb értékeket (lat.: p<0,001; 54%, med.: p<0,001; 26,5%) mértünk (13. sz. táblázat).

13.sz. táblázat: Leíró statisztika és kétmintás t-próba eredményei a különböző talpnyomás mutatókon (Maximális erő, Kontakt terület, Csúcs-nyomás) BMI kategóriák sz. (normál – elhízott), kilenc talpterületen. A százalékos különbségeknél az elhízottak adatait hasonlítottuk a normál értékeihez. Szignifikáns különbségek jelölése. (n=180) (LS= laterális sarok, MS= mediális sarok, LLK=laterális lábközép, MLK=mediális lábközép, LMT=laterális metatarsus, MMT=mediális metatarsus, LU=laterális ujjak, MU=mediális ujjak.)

<table>
<thead>
<tr>
<th>Normál BMI kategória (n=142)</th>
<th>Elhízott BMI kategória (n=38)</th>
<th>Különbség (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Átlag</td>
<td>Szórás</td>
</tr>
<tr>
<td>Maximális erő (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16,4</td>
<td>1,3</td>
</tr>
<tr>
<td>LS</td>
<td>2,0</td>
<td>1,0</td>
</tr>
<tr>
<td>MS</td>
<td>7,2</td>
<td>1,4</td>
</tr>
<tr>
<td>LLK</td>
<td>2,3</td>
<td>1,3</td>
</tr>
<tr>
<td>MLK</td>
<td>1,0</td>
<td>0,6</td>
</tr>
<tr>
<td>LMT</td>
<td>4,6</td>
<td>1,4</td>
</tr>
<tr>
<td>MMT</td>
<td>7,4</td>
<td>1,5</td>
</tr>
<tr>
<td>LU</td>
<td>0,7</td>
<td>0,4</td>
</tr>
<tr>
<td>MU</td>
<td>4,3</td>
<td>1,4</td>
</tr>
<tr>
<td>Kontakt terület (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,2</td>
<td>0,3</td>
</tr>
<tr>
<td>LS</td>
<td>7,0</td>
<td>2,3</td>
</tr>
<tr>
<td>MS</td>
<td>16,9</td>
<td>2,4</td>
</tr>
<tr>
<td>LLK</td>
<td>15,9</td>
<td>4,3</td>
</tr>
<tr>
<td>MLK</td>
<td>7,3</td>
<td>3,3</td>
</tr>
<tr>
<td>LMT</td>
<td>15,0</td>
<td>1,9</td>
</tr>
<tr>
<td>MMT</td>
<td>19,5</td>
<td>2,4</td>
</tr>
<tr>
<td>LU</td>
<td>4,6</td>
<td>1,5</td>
</tr>
<tr>
<td>MU</td>
<td>14,4</td>
<td>1,8</td>
</tr>
<tr>
<td>Csúcs-nyomás (N/cm²)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>82,2</td>
<td>21,6</td>
</tr>
<tr>
<td>LS</td>
<td>32,6</td>
<td>9,3</td>
</tr>
<tr>
<td>MS</td>
<td>43,7</td>
<td>12,7</td>
</tr>
<tr>
<td>LLK</td>
<td>21,2</td>
<td>14,2</td>
</tr>
<tr>
<td>MLK</td>
<td>17,4</td>
<td>5,6</td>
</tr>
<tr>
<td>LMT</td>
<td>49,7</td>
<td>20,6</td>
</tr>
<tr>
<td>MMT</td>
<td>65,7</td>
<td>22,5</td>
</tr>
<tr>
<td>LU</td>
<td>26,3</td>
<td>13,4</td>
</tr>
<tr>
<td>MU</td>
<td>64,6</td>
<td>25,4</td>
</tr>
</tbody>
</table>
4.4 Megbeszélések

4.4.1 Életkor és a talpnyomás minták vizsgálata

Eredményeink alapján hasonlóságról számolhatunk be a nemzetközi vizsgálatokkal, annak ellenére, hogy nem tanulmányoztuk 65 évnél idősebb felnőttek lábát. Adataink olyan kutatási eredményekkel vethetők csak össze, ahol markáns életkori különbségek mellett tanulmányozták a talpnyomás viszonyokat. Megfigyeléseink alátámasztják azokat a vizsgálatokat, amelyek szerint az életkorral csökken a csúcsnyomás és az erő a láb hátsó és elülső részén és megnövekedett a kontakt idő a láb középső területén (Hessert és mtsai., 2005; Scott és mtsai., 2007).

Vizsgálatunk eredményei alapján megállapíthatjuk, hogy a fiatal és középkorú csoport között dokumentálható a legtöbb talp területen és paraméterben statisztikai eltérés. Ugyanakkor az életkorban egyváltozás eső fiatal és idős csoport között kevesebb szignifikáns különbség látszik, míg a legkevésbé a középkorúak és idősek között található statisztikai differencia.

Megerősítve más publikációk adatait a talpnyomás minták területi eloszlását tekintve a lábközép és a metatarsusok területén a legtöbb paraméter esetében különbség állapítható meg az életkori csoportok között (Menz és Morris, 2006).

Kutatásunknak nem volt tárgya az ízületi mozgás, ízület deformitás, izomerő paraméterek, életkorral változó járás minta és talpnyomás eloszlás kapcsolatát vizsgálni az életkor függvényében. Ugyanakkor úgy gondoljuk, hogy Menz és Morris (2006),

A láb elülső területén a laterális metatarsusok alatt alacsonyabb csúcsnyomásról és maximális erőről számolhatunk be. Scott és munkatársai (2007) hasonló eredményt dokumentáltak, laterálisan csökkent nyomás és erő értékekről számoltak be, amely a lépéshossz csökkentésével mutatott kapcsolatot. Valószínűnek tartjuk, hogy ez a változás jellemezheti a vizsgált mintának idősebb tagjait is. Az szakirodalomban az említettektől eltérő adatokat is találunk, a mediális metatarsusok alatt tapasztaltak kisebb terhelést, amit az I. metatarso-phalangeális ízület szűkebb mozgásával és valgas deformitásával indokoltak az időseknél, mely változásokkal csökkent az elrugaszkodáskor ébredő erő ezen a területen (Menz és mtsai., 2006; Bryant és mtsai., 1999). A vizsgált, 55-65 életév közötti korosztálynál ilyen irányú változásról nem számolhatunk be. A kontakt idő szignifikáns emelkedését tapasztaltuk még a laterális metatarsusok területén, lehetségesnek tartjuk, hogy az ugyancsak kevésbé erőteljes, lassúbb járás eredményeként.

Az ujjaknál laterálisan emelkedett a nyomás-idő integrál értéke (19,5%), a fiatalokhoz képest, valószínű, hogy a hallux kisebb terheléssel vett részt az elrugaszkodásban. Ez a változás arra utalhat, hogy a hallux kevésbé hajlékony, ami miatt módosulhat a részvételen a járásban (Menz, 2014). A plantar fexor ízomzat erejének csökkenésével az ujjak stabilizáló ereje kisebb lesz járáskor, amely változás
Kutatásunkban az irodalmi adatokhoz hasonlóan megfigyelhető az életkorral csökkenő értékeket mutató csúcscsnyomás változás a talp egyes területein. Úgyanakkor az időegységnyi terhelés tekintetében jelentősen megnövekedett nyomást tapasztaltunk a fiatalokhoz képest időseknél a mediális lábkozép területén (25%) és a laterális ujjaknál (20%), amely arra enged következtetni, hogy a vizsgált, 50-65 éves korosztálynál is már elkezdődhetnek strukturális és funkcionális változások a mozgatórendszeren és a lábon, befolyásolva a talpi terhelés eloszlását. Úgy gondoljuk, több részletet kell még megismernünk, hogy megérthessük az életkorral összefüggő strukturális és funkcionális lábváltozások egyértelmű hatásait a plantáris nyomásmintákra.

4.4.2 Nemek és a talpnyomás minták vizsgálata

A láb középső területén mediálisan, a legtöbb vizsgált paraméter szignifikánsan magasabb értéket mutatott a nőknél, ezért terheltebb talpterületnek tekinthetjük, hasonlóan a kontakt terület (10%), a kontakt idő, a nyomás-idő integrál értéke (10%), és a maximális erő (15%) esetében. Vizsgálatunk adatok arra engednek következtetni, hogy a nőknél az alsó végtag fokozott valgus tengely állása, valamint a lazább szerkezetű lágyrész apparátus indokolhatja a mediális talpterület fokozott terhelését. Néhány, e

Vizsgálatunkban a saroknál jelentős eltérést a két nem között nem jegyeztünk. A sarok laterális területén volt kimutatható szignifikánsan magasabb csúcsnyomás érték a férfiaknál. Hennig és Milání (1994) a talp hátsó területén talált hosszabb kontakt időt férfiaknál.

Jelen vizsgálat adatai Putti és munkatársai (2010) eredményeihez hasonlóak. A férfiaknál a kontakt terület a teljes talpi régióban (6%), a 4., 5. metatarsusoknál és a lábközép laterális területén nagyobb, mint a nőknél, amely eltérés mögött a férfi láb kevésbé rugalmas voltát gondoljuk.

A nemzetközi és a hazai irodalomban kevés olyan pedobarográfás vizsgálat született, amely magyarázatul szolgálhatna a talpnyomás különbségekről a férfi és női nem között. Azonban jól ismert, hogy nőkre inkább jellemzőek a szerzett lábdeforitások és a lábfájdalom különösen az életkor előre haladásával (Menz, 2014). A fáradásos törések is gyakrabban érintik a női sportolókat. A női láb védelme érdekében a megfelelő cipő használatára érdemes lenne felhívni a figyelmet, különösen, ha már patológiás elváltozások jelentek meg.
4.4.3 Fizikai aktivitás és a talpnyomás minták kapcsolata

Korábban nem vizsgálták az egyénre jellemző fizikai aktivitás és a plantáris nyomás minták kapcsolatát egészséges, átlag felnőtt populáció, ezért jelen tanulmány megállapításai nehezen összevethetők más, e témakörben született kutatással. Előző tanulmányok a talp nyomásmintáit a fizikai terheléssel összefüggésben sportolókon sportaktivitás, gyaloglás és futás alatt, illetve közvetlenül azt követően vizsgálták, elsősorban fáradásos elváltozásokkal kapcsolatban. Úgy gondoljuk, hogy a hétköznapi fizikai terhelés során kumulált mechanikai hatások a lábon érvényesülnek, a fizikailag aktív egyénekre eltérő plantáris nyomás minta jellemző, mint a kevésbé aktiv egyénekre.

Eredményeink azt mutatják, hogy a magas fizikai aktivitású egyénekre magasabb csúcsnyomás- és a nyomás-idő integrál érték jellemző a talp közepén és a laterális metatarsusok területén, valamint alacsonyabb maximális erő érték az ujjaknál, mint az alacsonyabb aktivitású (mérsékelt fizikai aktivitás) személyekre. Úgy tűnik, hogy a magas fizikai aktivitású csoport talp középső területe és laterális metatarsusai erősebben terheltek, mint a mérsékelt fizikai aktivitású csoport alanyaié, ugyanakkor az ujjak területén a terhelés csökkent. Szignifikánsan nagyobb kontakt területet találtunk a talp teljes területén és emelkedett kontakt idő értékeket a láb közepén és a metatarsusok területén a magas aktivitású csoportban. Jelen kutatásnak nem volt célja az izomfáradás és a talpnyomás minták direkt kapcsolatát vizsgálni, ugyanakkor úgy gondoljuk, hogy a talpnyomás minták megváltozásában az egyénre jellemző mindennapi fizikai aktivitásnak szerepe lehet egy fáradási mechanizmus részeként, figyelembe véve, hogy a vizsgált, magas fizikai aktivitású csoport heti fizikai aktivitása kiemelkedően magas volt (8991,6±4654,3 MET-perc/hét). Lehetségesnek tartjuk, hogy a lábat érő mechanikai hatások a mindennapi mozgások során – úgy, mint közlekedés, munkahely, szabadidő, háztartás – mechanikai stresszhatást előidéző tényezőként viselkednek, kumulálódnak és hatásukra megváltoznak a talpi nyomásviszonyok.

Vizsgálatunkban a láb középső területén jelentős terheléséről számolhatunk be a magas fizikai aktivitású csoportban, a csúcsnyomás laterálisan 21%-al, mediálisan 11%-al nagyobb értékeket mutatott, mint a mérsékelt aktivitású csoportban. Ezen a talpterületen nagyobb, terhelésnövekedést tapasztaltunk, mint a láb elülső régiójában. A sportterhelést követően végzett vizsgálatoknál a metatarsusok erőteljesebb terhelés
gyengüléséről számoltak be, amelynek eredményeként megnő a reakciós erő és a láb hátulsó részének mozgása a korai támaszkodási fázisban.

Szinte minden korábbi, a fáradás hatását vizsgáló tanulmány a láb elülső területének fokozott terhelését állapítja meg, az ujjak egyidejű alul terhelésével. Eredményeink azt mutatják, hogy a mindennapi, nagyfokú terhelés hatására is szignifikáns mértékben megnövekszik a csúcsnyomás, a láb elülső területén laterálisan (9%) és mediálisan is (6,5%).

Sportolókkal kapcsolatos vizsgálatok eredményeihez hasonlóan az ujjak szignifikáns mértékű, csökkent terhelését találtuk, a nyomás-idő integrál értéke laterálisan 18%-al, mediálisan 11,5%-al csökkent. Egyetértünk azokkal az irodalmi adatokkal, amelyek szerint az ujjak alatt tapasztalt alacsonyabb nyomás értékek arra utalnak, hogy kevésbé vesznek részt az elrugaszkodásban. Fáradási mechanizmus hatására az alacsonyabb

Egyszeri, nagy fizikai terhelést követően végzett vizsgálatok adataihoz kaptunk hasonló eredményeket – a változás lokalizációját és tendenciáját tekintve – annak ellenére, hogy jelen kutatás az egyénre jellemző, fizikailag aktív életmód alapján vizsgálta a lábat. Úgy tűnik, hogy a lábat érő mindennapi terhelésnek hatása van a talpnyomás viszonyokra egészséges egyének esetében. Annak ellenére kaptuk ezt az eredményt, hogy csak aktív egyéneket vizsgáltunk (mérsékelt és magas fizikai aktivitás), inaktív egyéneket nem vettünk összehasonlításunk alapjául az alacsony elemszámúak miatt.

Úgy gondoljuk, hogy a fizikai terhelés kedvezőtlen hatása a lábra megelőzhető az átlag populációban mechanikai shockhatást csökkentő cipők fejlesztésével és gyártásával, mint ahogy az már az élsportolóknál gyakorlattá vált.

4.4.4 BMI és a talpnyomás minták vizsgálata

A nemzetközi adatokkal egybehangzóan eredményeink arra engednek következtetni, hogy az elhízás talpnyomás viszonyokat befolyásoló hatása jelentős, a láb terhelése szignifikánsan fokozódik, az ujjak kivételével, az egész lábon, de különösen a láb középső és elülső területén.

értéket elhízottaknál, saját eredményeink szerint az előlábon emelkedett érték figyelhető meg, de a maximum érték a láb középső, mediális területére lokalizálódik.

Az elhízott csoportnál, az ujjak alatt alacsonyabb maximális erő értéket jegyeztünk fel, hasonlóan mások vizsgálati eredményeihez (Teh és mtsai., 2006; Birtane és Tuna, 2004; Gravante és mtsai., 2003). Egyes tanulmányok szerint az ujjak kevésbé tekinthetők aktívnak a lesüllyedt hosszanti ívek miatt.

Tanulmányunk konklúziója arra hívja fel a figyelmet, hogy elhízás hatására kóros mértékű terhelés növekedés következik be a láb középső területén, különösen mediálisan és a metatarsusok alatt. Úgy gondoljuk, hogy a témában közölt eredmények sokat segíthetnek a láb súlyos el változásainak kezelésében, figyelembe véve, hogy az érintett betegpopulációban az elhízás gyakorisága magas.
4.5 Következtetés

Jelen fejezet eredményeiből levonható legfontosabb következtetések:

- Az életkor előrehaladtával megváltoznak a talpnyomás viszonyok már az 50-65 éves korosztályban. A változási folyamat háttérében kezdődő funkcionális vagy strukturális eltérések lehetségesek. Alacsonyabb csúcsnyomás és maximális erő értékek jellemzőek a láb elülső és hátsó részén. A megnövekedett nyomás-idő integrál értéke többlet terhelést mutat az idősebb korosztályban a láb középső, mediális területén, ami a mediális hosszboltozat fokozott terhelését jelenti.

- A nemek tekintetében nincs jelentős különbség a talpi csúcsnyomás értékekben, az irodalmi adatoktól eltérően a maximális erő megnövekedett értéke nőkre jellemzőbb, elsősorban a mediális talpterületen.

- Az egyénre jellemző magas fizikai aktivitás statisztikai összefüggést mutat a megnövekedett csúcsnyomás és nyomás-idő integrál értékével a láb középső részén és a laterális metatarsusok területén, amely többlet terhelés hosszú távon befolyásolhatja a láb egészségét.

- A vizsgált paraméterek közül a többlet testsúly jelenti a legnagyobb terhelést a láb számára. Az elhízással jelentősen nő szinte minden talpterületen a láb terhelése. A leginkább igénybe vett terület a láb középső, mediális része.

- A hosszanti boltozat területén dokumentálható a legtöbb vizsgált változó esetében a legnagyobb mértékű változás a talpnyomás eloszlásban, ennek a területnek a fokozott terhelését dokumentálhattuk. Eredményeink ismeretében úgy gondoljuk, hogy ez a talpi régió reagál a legérzékenyebben az életkori változásokra, a testtömeg és a mindennapi fizikai aktivitásból fakadó terhelés többletre.
5. III. Vizsgálat. Ízületi fájdalom gyakoriságának vizsgálata

5.1 Irodalmi áttekintés

5.1.1. Ízületi fájdalom gyakoriságának nemzetközi és hazai jellemzői

A mozgásszervi fájdalmmakkal foglalkozó vizsgálatok rizikó tényezőként az életkort, munkahelyi hatásokat, pszichoszociális faktorokat, alvászavart, dohányzást és a fizikai aktivitást emelik ki. Megállapítják, hogy a mozgásszervi panaszok és elváltozások gyakoribbak nőknél, valamint feltárják az elhízottság, túlsúly lehetséges kapcsolatát a mozgatórendszer fájdalmával (Felson és mtsai., 2000; Eriksen és mtsai., 2004; Mundal és mtsai., 2016).

A közelmúltban Kopp Mária vezetésével készült az a nagyszabású hazai tanulmány (Hungarostudy, 2002), amelyben a magyar lakosság több mint egyharmada számolt be krónikus fájdalomról (Kopp és Kovács, 2006). A nemzetközi vizsgálatokat áttekintve McFarlene és szerzőtársai (2008) szerint eltérő adatokat találunk a krónikus fájdalom gyakoriságát illetően. A krónikus fájdalom gyakoriságát Európában átlagosan 11,4% és 24% között közlik (Bergman és mtsai, 2001). Az Egyesült Államokban 2012-ben a krónikus fájdalom gyakorisága 11,2% volt (Nahin, 2015). Az említett adatok arra utalnak, hogy a hazai kutatások magasabb krónikus fájdalom gyakoriságról számolnak be, mint ahogyan azt a nemzetközi vizsgálatok eredményei mutatják. Ez alól kivételt jelent néhány tanulmány, így a holland népességen (n=8000) végzett felmérésben a
megkérdezettek 44,4%-ának volt krónikus fájdalma volt, a norvég lakosságban ennek gyakorisága 48% (Picavet és Schouten, 2003; Mundal és mtsai., 2016).

A krónikus fájdalnak mögött a leggyakrabban mozgásszervi elváltozások állnak (66.8%) (Sjøgren és mtsai., 2009). A WHO, a 2010-es Global Burden of Diseases jelentésében a derékfájdalmat emelte ki a leggyakoribb elváltozásként világszerte, negyedikként a nyaki gerinc panaszait, ötödik helyen más mozgásszervi elváltozásokat jelölt meg, pl. arthrosis (Vos és mtsai., 2012).

A láb és bokaízület fájdalmának vizsgálata a hazai populációban alulértékelő, erre vonatkozó közleményeket alig találni. Külföldi kutatási eredmények a lábfájdalom gyakoriságát a 45 év feletti populációban 20-37% között jegyzik (Golightly és mtsai., 2011). Thomas és munkatársai (2011) nagy epidemiológiai tanulmányukban a 25-60
életkorú populációban a lábfájdalom 24%-os és a bokafájdalom 15%-os prevalenciájáról számoltak be, a nőknél magasabb gyakorisággal.

Egyes szerzők szerint a vállfájdalom a harmadik leggyakoribb mozgásszervi fájdalom, a felnőtt lakosság 30%-a számol be róla, 4-47% közötti prevalencia értékként találkozhatunk (Bicer és Ankarali, 2010), de munkahelyi hatás következtében akár 70%-os is lehet a gyakorisága (Luime és mtsai., 2005). Herin és munkatársai (2012) (n=12 714) a francia populációt vizsgálva a krónikus vállfájdalom 11%-os gyakoriságáról számoltak be. Angol népességen végzett kutatás 24%-os munkavégzéshez köthető vállfájdalomról számolt be (Sim és mtsai., 2006).

5.1.2 Életkor és izületi fájdalom kapcsolata

A legtöbb tanulmányban jól látható az izületi fájdalom gyakorisága és az életkor között fellépő korreláció. Az elmúlt évek nagy epidemiológiai vizsgálatai igazolják a krónikus fájdalom progresszióját és általánossá válását az életkor növekedésével mind a két nemnél, elsősorban a hetedik és nyolcadik életévtizedben (Bergman és mtsai., 2002; Sjøgren és mtsai., 2009). Ugyanakkor irodalmi adatok arra is utalnak, hogy a mozgásszervi fájdalom nem feltétlenül az idős korosztály tünete, fiataloknál is gyakori az előfordulása (Picavet és Schouten, 2003; Peltonen és mtsai., 2003). Blyth és szerzőtársai (2001) 15 tanulmány eredményeit figyelembe véve a krónikus fájdalmat a középkorosztálytal állították összefüggésbe. A spanyol népességben nőknél, a 45-64 éves korosztályban volt megkövetedett a fájdalom gyakorisága (Jiménez-Sánchez és mtsai., 2010). Egy, a norvég populáció végzet vizsgálat megállapítása szerint a krónikus fájdalom leggyakrabban a 40-49 éves korosztályt érinti (Mundal és mtsai., 2016).

A mozgásszervi fájdalmak háttérében a térd- és csipőarthrosis, osteoporosis, rheumatoid arthritis és más krónikus arthritis is összefüggésbe hozható az időskorral, ugyanakkor az epicondylitis, tendinitis/capsulitis és ismétlődő rándulásos sérülések a 45-54 éves korosztálynál okoznak gyakrabban fájdalmat (Wijnhoven és mtsai., 2006).

Az életkor előre haladása rizikó faktort jelent a lábelváltozások gyakoriságában, 65 év felett a fájdalom és diszkomfort érzet gyakori, megközelítőleg három fő közül egy esetben megjelenik (Menz és mtsai., 2006; Menz és Morris, 2005). Az angol populációban (n=3047, 18-80 életév) a lábfájdalom gyakorisága nőkénél 11%-os, férfiaknál 8%, életkori csúcsát az 55-64 éves populációban éri el. (Garrow és mtsai., 2004).

Badley és munkatársai a vállfájdalom gyakoriságának csúcsát a középkorú és az idősebb korosztályba helyezték (Badley és Tennant, 1992).

5.1.3 Nemek és ízületi fájdalom kapcsolata

Az ízületi fájdalom gyakorisága és a női nem között gyakran látni korrelációt az epidemiológiai jellegű tanulmányokban, de a kapcsolat nem egyértelmű minden ízület esetében.

Epidemiológiai tanulmányok alátámasztják, hogy a nemek tekintetében a krónikus fájdalmat biológiai, pszichológiai és szocio-kulturális tényezők egyaránt befolyásolják (Fillingim, 2003; Bernardes és Lima, 2012). Európában és az Ausztrál kontinensen folytatott kutatások egybehangzóan a nők gyakoribb krónikusfájdalom előfordulását állapították meg (Fillingim és mtsai., 2009; Jiménez-Sánchez és mtsai., 2010). Wijnhoven és szerzötársai (2006) (n=11 428 nő) a derékfájás és a felső végtag fájdalom kapcsolatát állapították meg a rendszertelen és elhúzódó menstruációs ciklussal,

A hazai kutatási eredményekből kiderül, hogy a magyar felnőtt lakosságban a nőknél életkortól függetlenül gyakrabban fordul elő csípőÍzületi fájdalom (27.5%) (Horváth, 2011). A derékfájdalom 10%-kal gyakrabban jellemezte a nőket, mint a férfiakat, a térdfájdalom gyakorisága is inkább nőknél volt megnövekedett. A Hungarostudy 2002 a krónikus fájdalommal kapcsolatban szintén beszámol rizikótényezőként a női nemről.

5.1.4 Fizikai aktivitás és az ízületi fájdalom kapcsolata

A témával kapcsolatban inkább külföldi irodalmi adatokra támaszkodhatunk, magyar populációt vizsgáló tanulmányokat nem vagy alig találunk. A nemzetközi irodalmat áttekintve szembenő, hogy a fizikai aktivitás és az ízületi fájdalom kapcsolatáról szóló tanulmányok nem mutatnak egységes képet, kapcsolatuk még nem tisztázott.
Vizsgálatunk munkaképes populációra terjedt ki, ezért a mozgásszervi fájdalom egyik lehetséges előidéző tényezőjeként szólnunk kell a munkavégzéshez köthető mozgásszervi foglalkozási betegségekről. Azért is indokolt a témával foglalkozni, mert munkájukból fakadóan extrém magas fizikai aktivitású, valamint ülő foglalkozású alanyokat vizsgáltunk.

A WHO úgy határozta meg a foglalkozással összefüggő rendellenességeket, mint amely több tényező közrehatására alakulnak ki, és amely esetében a munkakörnyezet és a munkateljesítmény alapvetően, de eltérő mértékben befolyásolják a betegség kialakulását. Hátterében munkahelyhez köthető és munkahelyhez nem köthető pszichoszociális, fizikai, biomechanikai rizikó faktorokat említenek egyéni predisposíció mellett. Ma már bizonyított a foglalkozási betegségek kapcsolata pszichológiai, neuroimmunológiai elváltozásokkal, depresszióval, feszültséggel, fokozott munkahelyi stresszel, alacsony fájdalom küszöbben, a fájdalom ingerre fokozott reakcióval, alacsony önbizalommal a probléma megoldási folyamatokban (Clays és mtsai., 2005; Gold és mtsai., 2006).

A munkavégzés során ismételt mozgások súlyosbíthatják a természetesen is előforduló rendellenességeket (Sheon és mtsai., 1996). A tünetek és elváltozások a mozgatórendszer érinthetik beleértve a lágyszöveteket, izmokat, izületeket, perifériás idegeket, porcsovetet, inakat, spinalis discusokat, azok mikrokeringsét, anyagcseréjét, propriocepciót. A munkavégzéshez köthetően kumulálódó mechanikai stresszhatások következtében a gyulladásos és degeneratív elváltozások széles skáláját találjuk. Gyakran tünetekkel járó helyi problémákat okoznak, alagút szindrómákat, epicondylitist, myofasciális fájdalmat, bursitist vagy sztenotizáló tenosynovitist. Az elmúlt évek megfigyeléseiből szerint túlfáradásos sérüléseknél serum biomarkerek is utalnak a szöveti elváltozásokra (Kuiper és mtsai., 2006).

Az Európai Unióban növekvő trendet mutat a mozgásszervi foglalkozási betegségek gyakorisága. Az Eurostat által közölt, regisztrált foglalkozási betegség adatok szerint a váz- és izomrendszeri problémák jelentik a legelterjedtebb foglalkozási betegséget az összes foglalkozási megbetegedés közül (38%) (EU-OSHA). Az európai adatok mind a gerinc, vagy felsővégtag problémák körébe tartoznak. Egyes vélemények szerint az alsóvégtagok munkavégzés eredetű érintettsége még alulbecsült, kevésbé vizsgált terület.

Gyakran vizsgált területnek tekinthetjük a fizikai aktivitás lehetséges hatását a derékfájásra. A derékfájdalom gyakori tünete a munkaképes korosztálynak, munkahelyi aktivitás szerepelhet etiologiájában (National Institute of Neurological Disorders and Stroke. 2003). Ugyanakkor ellentmondó tanulmányok születtek a fizikai aktivitás
hatásáról, nem tisztázott még a szerepe a derékfájdalom etiológiájában, prevenciójában, számon tartják mind preventív- mind rizikó tényezőként (Kovácsné Bobály és mtsai., 2016; Auvinen és mtsai., 2008; Hoogendoorn és mtsai., 2002). Közelmúltbeli megfigyelések szerint a munkahelyi hatások, a rendszeres emelés, hajlás és rotációs mozdulatok és az extrém sportaktivitás, az állás, gyaloglás és a derékfájdalom között kapcsolat állapítható meg (Claus és mtsai., 2008; Kopec és mtsai., 2004). Roffey és munkatársai (2010) szisztematikus áttekintő tanulmányukban nem találtak összefüggést a munkahelyi állás, gyaloglás és a derékfájdalom között. Ugyanakkor a fizikai inaktivitást és az ülő életmódot is több vizsgálat összefüggésbe állította a derékfájdalommal (Mitchell és mtsai., 2010; Bjørck-van Dijken és mtsai., 2008), de nem minden esetben állapítottak meg önálló rizikófaktorként (Kwon et al. 2011, Roffey és mtsai., 2010). Több tanulmány is megerősíti, hogy a fizikai aktivitás és a súlycsökkenés együttesen, kedvező befolyásolja a derékfájdalmat (Hicks és mtsai., 2012; Siithipornvorakul és mtsai., 2011).

Lábfájdalom és fizikai aktivitás kapcsolatával kevés irodalom foglalkozik, elsősorban sporttevékenység kapcsán találhatunk adatokat. Csak néhány tanulmány közölte eredményeit – eladókat, postai dolgozókat vizsgálva -, hogy a munkavégzéssel kapcsolatos fizikai aktivitás meghatározza a testtartást és az alsó végtag használatot, diszkomfort érzést és panaszokat okozva (Sobti és mtsai 1997; Reid és mtsai 2010). Fizikai aktivitás hatását vizsgálva elit labdarugó játékosoknál számoltak be egy
összefoglaló tanulmányban Kuijt és szerzőtársai (2012) a bokaizületi arthrosis gyakoribb elfordulásáról az átlagpopulációhoz és más foglalkozású populációhoz képest.

A munkavégzéshez köthető nyakfájdalom gyakoriságát 11-14%-ra becsüli az International Association for the Study of Pain (2009). Több, nagy áttekintő tanulmány megállapítja a munkavégzés kapcsolatát a nyak és a felsővégtag fájdalmával (Bongers és mtsai., 2006; Strom és mtsai., 2009; Molics és mtsai., 2015). Egy dán tanulmány hivatásos járművezetők körében 10 éves periódusban vizsgálta a cervikális discus patológia megjelenését, szignifikánsan magasabb rizikóját találták ebben a populációban (Jensen és mtsai., 1996)

5.1.5 BMI és az izületi fájdalom kapcsolata

A nemzetközi irodalom adatait összefoglalva megállapíthatjuk, hogy az izületi fájdalom gyakorisága és a BMI között fellépő korreláció nem egyértelmű minden izülettel kapcsolatban. Legerősebb összefüggés a magas BMI és térdizületi fájdalom, arthrosis között látható, ugyanakkor a csípőizület, vállizület fájdalmával és a derékfájdalommal már kevésbé állapítható meg egyértelmű kapcsolat.

Nemzetközi kutatások felhívják a figyelmet a túlsúly erős kapcsolatára az általános és krónikus egészség problémával. Elhízottaknál magasabb arányú mozgásrendszéri fájdalom előfordulásáról számolnak be Jiménez-Sánchez és munkatársai (2010).

A magyar lakosságon végzett felmérésben megtalálhatsz a kórosan megnövekedett BMI és a térdarthrosis kapcsolatát (Horváth és mtsai., 2011). Bálint G. (2007) nagyizületi arthrosisról megjelent tanulmányában összefoglalva bemutatja, hogy az arthrosisos betegek száma növekvő tendenciát mutat, hátterében a népesség öregedése mellett az elhízott fiatalok megnövekedett száma is szerepel. A térdarthrosis és az elhízottság között a kapcsolat egyértelműnek tűnik, amennyiben a BMI 30kg/m² feletti, mind a két nemnél négyszer nagyobb a rizikó előfordulására a normál testsúlyú egyénekhez képest. Irodalmi adatok szerint minden 5 kilogramm túlsúly 50%-al növeli az térdizületi arthrosis kockázatát (Mark, 2007; Teichtahl és mtsai., 2014; Gunardi és mtsai., 2013). Csípőizület esetében nem ennyire egyértelmű az összefüggés az arthrosis és az elhízottság között (Gelber, 2003; Sturmer és mtsai., 2000). A hazai kutatásokban a BMI és a csípőizületi panaszok szoros kapcsolatot mutattak Horváth és szerzőtársai

A vállfájdalom és az elhízás között fellépő lehetséges kapcsolatról csak néhány tanulmány adatára támaszkodhatunk (Nilsen és mtsai., 2011; Moreira-Silva és mtsai., 2016), más vizsgálatok nem találtak összefüggést a non-specifikus vállfájdalom és a BMI között a munkaképes populációban (Miranda és mtsai., 2005; Skov és mtsai., 1996).

Számos irodalomi adat szól amellett, hogy az elhízásnak szerepe lehet a lábfájdalom rizikójában. A dán populációt vizsgálva, a női nemnél erős kapcsolatról számoltak be a magas BMI érték és a lábfájdalom között, ugyanezt az eredményt férfiaknál nem állapították meg, ugyanakkor normál BMI érték mellett is szignifikánsan gyakoribb lábfájdalom előfordulásról számoltak be nőknél, mint férfiaknál (Mølgaard és mtsai., 2010; Mickle és Steele, 2015.)

5.2 Anyag és módszer

A kutatás típusa szerint prospektív, az előforduló ízületi fájdalom keresztmetszeti elemzése történt. Az ízületi fájdalom gyakoriságának vizsgálatával kapcsolatban az előző két fejezet ugyanazon, 309 fős minta adatait használtuk fel számításainkhoz. A vizsgálatból kizárásra kerültek azok az egyének, akikre jellemző volt a mozgatórendszer érintő friss sérülések, műtétek, endoprothesis beültetés, veleszületett deformitások, neurológiai kórépek, reumás elváltozások.
5.2.1 Ízületi fájdalom vizsgálata

A mozgásszervi panaszok átfogó vizsgálatára nem léteznek kidolgozott és mindenki által elfogadott kérdőívek, a kutatás során saját fejlesztésű, strukturált kérdőívet alkalmaztunk (9. sz. melléklet). A kérdőív több fejezetei az alábbiak voltak: szociodemográfiai adatok felvétele, mint életkor, nem, antropometriai adatok közül a BMI; az ízületi fájdalom előfordulásának mérésére a nem fáj, időnként fáj, és a legalább hat hónapja mindennap fáj - krónikus fájdalom – kategóriákat állítottuk fel. Az adatok felvételét személyes interjú keretében végeztük.

Amikor összességében vizsgáltuk az ízületeket (mind a 8 terület), akkor a következők szerint csoportosítottuk a mintaelemeket: akinek legalább egy ízület esetében volt krónikus fájdalma, akkor az egyén a „krónikus fájdalom” csoportba került; ha krónikus fájdalma nem volt, de legalább egy esetben időnkénti fájdalom jelentkezett, akkor az „időnkénti fájdalom” csoportba került, és ha semmilyen fájdalma nem volt, akkor a „nincs fájdalom” csoportba tartozott.

A fájdalom lokalizációját tekintve a következő anatomiai területek vizsgálata történt: vállízület, nyaki-, háti gerinc, lumbális gerinc, csípőízület, térdízület, boka, láb.

5.2.2 Adatelemzési módszer

Egyes ízületek fájdalma (kvalitatív változó) és a nem (szintén kvalitatív változó), a BMI, az életkor, a heti-totál fizikai aktivitás (kvantitatív, arányskálán mért változók) kapcsolatát kapcsolat-szorzossági mérőszámmokkal jellemeztük. A felsorolt változók és az egyes ízületi fájdalom kategóriák függetlenségét variancia-analízis segítségével vizsgáltuk. A kapcsolat-szorzossági mérőszám a szórászáros mutatója. Az ízületi fájdalom 3 szintű kategória változójának modellezésére (nem fáj; időnként fáj, krónikus fájdalom) multinomiális logisztikus regresszió analízist alkalmaztunk, a referencia érték minden anatomiai régió esetében a fájdalommentesség volt. Az adatok feldolgozását SPSS 20.00 programmal végeztük. Az elemzések során a p<0,05 szignifikancia érték esetén vetettük el a függetlenséget feltételező nullhipotézist (Rappai-Pintér, 2007).
5.3 Eredmények

5.3.1 Ízületi fájdalom gyakoriságának vizsgálata

Vizsgálatunkban a minta 8%-ának nincs ízületi fájdalma, 54 %-ának van időnkénti és 38 %-nak van krónikus fájdalma (14. sz. táblázat).

Egy ízület krónikus fájdalma 9,5% gyakoriságot mutat; egy ízület időnkénti fájdalma 10%-ban fordul elő, több ízület időnkénti fájdalma 42%-ban, a minta 30,5 %-ára jellemző több ízület együttes krónikus fájdalma (15. sz. táblázat). A krónikus ízületi fájdalom legmagasabb gyakorisága a lumbális területet jellemzi (18,6%). Az időnkénti ízületi fájdalom szintén dérr és a háti régiójában a leggyakoribb (17,8%). A két fájdalom kategóriát együtt elemezve a dérrfájdalom összességében 36,4%-os, a háti gerinc fájdalma 36%-os gyakoriságot mutat. A vizsgált mintában fájdalom által legkevésbé érintett ízület a boka és a csípőízület (10. sz. melléklet).

| 14.sz. táblázat: Fájdalom megoszlása, nem-, életkor-, BMI-, fizikai aktivitás kategóriák szerint (elemszám(megoszlás a sor százalékában)) (n=309) |
|---|---|---|---|
| | n | nincs fájdalom | időnkénti fájdalom | krónikus fájdalom |
| Nem | | | | |
| férfi | 114 | 8 (7,0) | 71 (62,3) | 35 (30,7) |
| nő | 195 | 17 (8,7) | 95 (48,7) | 83 (42,6) |
| p érték | | | 0,066 | |
| | 0,008 | |
| Életkor | | | | |
| -29 | 68 | 6 (8,8) | 78 (70,6) | 14 (20,6) |
| 30-49 | 162 | 12 (7,4) | 86 (53,1) | 64 (39,5) |
| 50- | 69 | 5 (7,2) | 29 (42,0) | 35 (50,7) |
| p érték | | | 0,008 | |
| BMI | | | | |
| normál | 167 | 17 (10,2) | 94 (56,3) | 56 (33,5) |
| túlsúlyos | 96 | 4 (4,2) | 53 (55,2) | 39 (40,6) |
| elhízott | 46 | 4 (8,7) | 19 (41,3) | 46 (50,0) |
| p érték | | | 0,131 | |
| Totál fizikai aktivitás | | | | |
| alacsony | 11 | 2 (18,2) | 3 (27,3) | 6 (54,5) |
| mérsékelt | 98 | 8 (8,2) | 53 (54,1) | 37 (37,8) |
| magas | 200 | 15 (7,5) | 110 (55,0) | 75 (37,5) |
| p érték | | | 0,438 | |
| Összes | 309 | 25 (8,1) | 166 (53,7) | 118 (38,2) |
15.sz.táblázat: Ízületi fájdalomkategóriák százalékos megoszlása a mintasokaságban (n=309)

<table>
<thead>
<tr>
<th>Ízületi fájdalomkategóriák</th>
<th>gyakoriság (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nincs fájdalom</td>
<td>7,9%</td>
</tr>
<tr>
<td>1 ízület időnkénti fájdalma</td>
<td>10,1%</td>
</tr>
<tr>
<td>több ízület időnkénti fájdalma</td>
<td>42,1%</td>
</tr>
<tr>
<td>1 ízület krónikus fájdalma</td>
<td>9,4%</td>
</tr>
<tr>
<td>több ízület krónikus fájdalma</td>
<td>30,5%</td>
</tr>
</tbody>
</table>

Szignifikáns összefüggést az összes ízület fájdalmát vizsgálva, egyedül az életkorral kapcsolatban állapíthatunk meg (p=0,008). Az 50 év feletti korosztályban a legmagasabb, 50,7%-os a krónikus fájdalom előfordulása, míg 29 év alattiak esetében az időnkénti ízületi fájdalom szerepel a legmagasabb gyakorisággal (70,6%), az ízületi fájdalmat egyáltalán nem érzők aránya is ezt a korosztályt jellemzi (8,8%) (14. sz. táblázat).

Az egyes ízületek fájdalmát külön-külön értékelve szignifikáns kapcsolatot a BMI-vel, az életkorral, a heti, totál fizikai aktivitással, és a nemekkel találtunk, amely összefüggéseket a későbbi fejezetekben tárgyaljuk (16. sz. táblázat).

A krónikus fájdalom előfordulása az ízületeken gyakorisági sorrendbe állítva (csökkenő sorrend): derék (18,6%); hát (18,2%); láb (14%); nyak (13,6%); térd (11,7%); váll (10,6%); csípő (7,6%); boka (5,7%) (1. sz. ábra; 10. sz. melléklet).

![1.sz. ábra:](image-url)
Az egyes ízület fájdalma több ízület fájdalmával is szignifikáns kapcsolatot mutat. A háti gerinc, csipő- és a vállüzület fájdalma további 7 ízület fájdalmával áll szignifikáns kapcsolatban, a boka, a nyak és a térd 6 ízülettel, a derék 5 és a láb 4 további ízülettel (16. sz. táblázat).

16. sz. táblázat: Függetlenségvizsgálathoz tartozó p-értékek: Egyes ízületek fájdalma közötti összefüggések vizsgálata (Khi-négyzet próbá): □; BMI, Tolál fizikai aktivitás, életkor, nem és az egyes ízületi fájdalom összefüggésének megjelenítése (variancia-analízis, kivéve nem: Khi-négyzet próbá):

<table>
<thead>
<tr>
<th>BMI</th>
<th>Tolál fizikai aktivitás</th>
<th>Életkor</th>
<th>Nemek</th>
<th>nyak</th>
<th>boka</th>
<th>térd</th>
<th>csipő</th>
<th>váll</th>
<th>derék</th>
<th>hát</th>
<th>láb</th>
</tr>
</thead>
<tbody>
<tr>
<td>nyak</td>
<td>0.291</td>
<td>0.785</td>
<td>0.059</td>
<td>0.175</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>boka</td>
<td>0.003</td>
<td>0.029</td>
<td>0.013</td>
<td>0.918</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>térd</td>
<td>0.141</td>
<td>0.391</td>
<td><0.001</td>
<td>0.801</td>
<td>0.004</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>csipő</td>
<td>0.151</td>
<td>0.067</td>
<td>0.003</td>
<td>0.463</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>váll</td>
<td>0.089</td>
<td><0.001</td>
<td>0.006</td>
<td>0.170</td>
<td><0.001</td>
<td>0.015</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>derék</td>
<td>0.577</td>
<td>0.575</td>
<td>0.069</td>
<td>0.237</td>
<td><0.001</td>
<td>0.430</td>
<td><0.001</td>
<td>0.028</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hát</td>
<td>0.710</td>
<td>0.693</td>
<td>0.216</td>
<td>0.016</td>
<td><0.001</td>
<td>0.002</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>láb</td>
<td>0.018</td>
<td>0.121</td>
<td>0.256</td>
<td>0.977</td>
<td>0.286</td>
<td><0.001</td>
<td>0.118</td>
<td>0.018</td>
<td>0.045</td>
<td>0.082</td>
<td>0.005</td>
</tr>
</tbody>
</table>

17. sz. táblázat: Ízületi fájdalom megjelenésének gyakorisága (%), nem-, életkor-, BMI-, fizikai aktivitás kategóriák szerint (megoszlás a sor százalékában) (n=309)

<table>
<thead>
<tr>
<th>BMI</th>
<th>NYAK</th>
<th>VÁLL</th>
<th>HÁT</th>
<th>DERÉK</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td>férfi</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td></td>
</tr>
<tr>
<td>nő</td>
<td></td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td>p érték</td>
<td></td>
</tr>
<tr>
<td>0,175</td>
<td></td>
</tr>
<tr>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>0,016</td>
<td></td>
</tr>
<tr>
<td>0,237</td>
<td></td>
</tr>
<tr>
<td>-29</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td></td>
</tr>
<tr>
<td>p érték</td>
<td></td>
</tr>
<tr>
<td>0,624</td>
<td></td>
</tr>
<tr>
<td>0,081</td>
<td></td>
</tr>
<tr>
<td>0,956</td>
<td></td>
</tr>
<tr>
<td>0,231</td>
<td></td>
</tr>
<tr>
<td>normál</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td></td>
</tr>
<tr>
<td>p érték</td>
<td></td>
</tr>
<tr>
<td>0,815</td>
<td></td>
</tr>
<tr>
<td>0,139</td>
<td></td>
</tr>
<tr>
<td>0,091</td>
<td></td>
</tr>
<tr>
<td>0,493</td>
<td></td>
</tr>
<tr>
<td>tűlsúlyos</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td></td>
</tr>
<tr>
<td>p érték</td>
<td></td>
</tr>
<tr>
<td>0,455</td>
<td></td>
</tr>
<tr>
<td>0,364</td>
<td></td>
</tr>
<tr>
<td>0,182</td>
<td></td>
</tr>
<tr>
<td>0,182</td>
<td></td>
</tr>
<tr>
<td>0,082</td>
<td></td>
</tr>
<tr>
<td>mérsékel</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td></td>
</tr>
<tr>
<td>p érték</td>
<td></td>
</tr>
<tr>
<td>0,531</td>
<td></td>
</tr>
<tr>
<td>0,357</td>
<td></td>
</tr>
<tr>
<td>0,112</td>
<td></td>
</tr>
<tr>
<td>0,663</td>
<td></td>
</tr>
<tr>
<td>0,276</td>
<td></td>
</tr>
<tr>
<td>0,61</td>
<td></td>
</tr>
<tr>
<td>0,429</td>
<td></td>
</tr>
<tr>
<td>0,408</td>
<td></td>
</tr>
<tr>
<td>0,163</td>
<td></td>
</tr>
<tr>
<td>magas</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>p érték</td>
<td></td>
</tr>
<tr>
<td>0,535</td>
<td></td>
</tr>
<tr>
<td>0,35</td>
<td></td>
</tr>
<tr>
<td>0,115</td>
<td></td>
</tr>
<tr>
<td>0,455</td>
<td></td>
</tr>
<tr>
<td>0,445</td>
<td></td>
</tr>
<tr>
<td>0,15</td>
<td></td>
</tr>
</tbody>
</table>
18.sz. táblázat: Ézületi fájdalom megjelenésének gyakorisága (%) nem-, életkor-, BMI-, fizikai aktivitás kategóriák szerint (elemszám(megoszlás a sor százalékában)) (n=309)

<table>
<thead>
<tr>
<th></th>
<th>CSÍPŐ</th>
<th>TÉRD</th>
<th>BOKA</th>
<th>LÁB</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nem faj</td>
<td>időnként krónikus</td>
<td>nem faj</td>
<td>időnként krónikus</td>
<td>nem faj</td>
</tr>
<tr>
<td>férfi</td>
<td>114</td>
<td>83,3</td>
<td>11,4</td>
<td>5,3</td>
<td>60,5</td>
</tr>
<tr>
<td>nő</td>
<td>195</td>
<td>77,4</td>
<td>15,4</td>
<td>17,2</td>
<td>61</td>
</tr>
<tr>
<td>p érték</td>
<td></td>
<td>0,463</td>
<td></td>
<td></td>
<td>0,801</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Életkor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-29</td>
<td>68</td>
<td>92,6</td>
<td>5,9</td>
<td>1,5</td>
<td>70,6</td>
<td>26,5</td>
<td>2,9</td>
<td>83,8</td>
<td>16,2</td>
<td>0,0</td>
<td>58,8</td>
<td>33,8</td>
<td>7,4</td>
</tr>
<tr>
<td>30-49</td>
<td>162</td>
<td>75,9</td>
<td>16</td>
<td>8</td>
<td>62,3</td>
<td>28,4</td>
<td>9,3</td>
<td>82,1</td>
<td>14,8</td>
<td>3,1</td>
<td>59,9</td>
<td>28,4</td>
<td>11,7</td>
</tr>
<tr>
<td>50-</td>
<td>69</td>
<td>76,8</td>
<td>17,4</td>
<td>5,8</td>
<td>46,4</td>
<td>36,2</td>
<td>17,4</td>
<td>69,6</td>
<td>18,8</td>
<td>11,6</td>
<td>58</td>
<td>24,6</td>
<td>17,4</td>
</tr>
<tr>
<td>p érték</td>
<td></td>
<td>0,051</td>
<td></td>
<td>0,015</td>
<td></td>
<td>0,009</td>
<td></td>
<td>0,413</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>normál</td>
<td>167</td>
<td>82</td>
<td>12,6</td>
<td>5,4</td>
<td>65,3</td>
<td>28,1</td>
<td>6,6</td>
<td>87,4</td>
<td>10,8</td>
<td>1,8</td>
<td>64,1</td>
<td>29,3</td>
<td>6,6</td>
</tr>
<tr>
<td>túlsúlyos</td>
<td>96</td>
<td>79,2</td>
<td>14,6</td>
<td>6,3</td>
<td>54,2</td>
<td>32,3</td>
<td>13,5</td>
<td>69,8</td>
<td>20,8</td>
<td>9,4</td>
<td>50</td>
<td>33,3</td>
<td>16,7</td>
</tr>
<tr>
<td>elhízott</td>
<td>46</td>
<td>71,7</td>
<td>17,4</td>
<td>10,9</td>
<td>58,7</td>
<td>26,1</td>
<td>15,2</td>
<td>69,6</td>
<td>23,9</td>
<td>6,5</td>
<td>63</td>
<td>15,2</td>
<td>21,7</td>
</tr>
<tr>
<td>p érték</td>
<td></td>
<td>0,589</td>
<td></td>
<td>0,185</td>
<td></td>
<td>0,002</td>
<td></td>
<td>0,004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BMI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>alacsony</td>
<td>11</td>
<td>90,9</td>
<td>0</td>
<td>9,1</td>
<td>4,5</td>
<td>18,2</td>
<td>27,3</td>
<td>90,9</td>
<td>9,1</td>
<td>0,1</td>
<td>63,6</td>
<td>27,3</td>
<td>9,1</td>
</tr>
<tr>
<td>mérsékel</td>
<td>98</td>
<td>79,6</td>
<td>15,3</td>
<td>5,1</td>
<td>64,3</td>
<td>27,6</td>
<td>8,2</td>
<td>82,7</td>
<td>12,2</td>
<td>5,1</td>
<td>67,3</td>
<td>23,5</td>
<td>9,2</td>
</tr>
<tr>
<td>magas</td>
<td>200</td>
<td>79</td>
<td>14</td>
<td>7</td>
<td>59,5</td>
<td>30,5</td>
<td>10</td>
<td>77</td>
<td>18</td>
<td>5,0</td>
<td>55,5</td>
<td>31</td>
<td>13,5</td>
</tr>
<tr>
<td>p érték</td>
<td></td>
<td>0,673</td>
<td></td>
<td>0,332</td>
<td></td>
<td>0,606</td>
<td></td>
<td>0,406</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3.2 Életkor és az izületi fájdalom vizsgálata

A mintába 18 évnél fiatalabb és 65 évnél idősebb egyének nem kerültek. Minden korcsoportnál a krónikus fájdalom előfordulása volt a legkevésbé jellemző. Megállapítjuk, hogy az életkor emelkedésével gyakorisága növekszik, legmagasabb gyakoriságot az 50 év felettiek korcsoportjában érte el: 50,7% (14. sz. táblázat).

Az 50 év feletti korosztályban leggyakoribb krónikus fájdalomként a derékfájdalom jelenik meg (20,3%). Erre a korosztályra leggyakoribb időnkénti fájdalomként a hátfájdalom jellemző (43,5%), nem fájdalmas ízületként pedig a csípő ízület (76,8%) (17.,18. sz. táblázat).

A 30-49 éves korcsoportnál legmagasabb gyakoriságot a krónikus izületi fájdalmak közül a derékfájdalom mutat (16,7%), az időnkénti fájdalmak közül a hátfájdalom (43,2%). A nem fájdalmas ízület legmagasabb aránya a boka ízületre jellemző (82,1%). (17.,18. sz. táblázat).

A 29 évesnél fiatalabb korcsoportnál a krónikus fájdalom magas gyakorisága a hátfájdalom esetében jellemző leginkább (11,8%) ez egyben a három korcsoporton belül
a legmagasabb hátfájdalom gyakoriságot mutatja, az időnkénti fájdalom leggyakrabban a deréktájékot érinti (51,5%), a leginkább nem fájdalmas ízület a boka ízület, gyakorisága 83,8%. A krónikus fájdalom jellemzi legkevésbé ezt a korosztályt (17..18. sz. táblázat).

A kapcsolat szorossági mérőszámokat értékelve az életkor a boka (p=0,013), térd- (p<0,001) és csípőízület (p=0,003) valamint a váll fájdalmával (p=0,006) mutat szignifikáns kapcsolatot (16.sz. táblázat).

A multinomiális logisztikus regresszióanálisis (Hajdu, 2003) vizsgálatunkkor a referencia érték minden anatómiai régió esetében a fájdalommentesség volt. Az eredmények minden esetben ehhez képest értendők. A modellek magyarázó ereje minden esetben viszonylag alacsony volt (a Nagelkerke-féle R^2 mutató alapján 4,5-14,9%). Eredményeink alapján megállapítható, hogy az életkor növekedésével 1,05-szeresére nő a valószínűsége annak, hogy krónikus nyakfájdalma, és 1,03-szor valószínűbb, hogy időnkénti és 1,08-szor valószínűbb, hogy krónikus vállfájdalma van az egyénnek. Az életkor előre haladásával 1,09-szeresére nő a valószínűsége, hogy krónikus boka, 1,03-szor, hogy időnkénti térd és 1,09-szer valószínűbb, hogy krónikus térdizületi fájdalommal rendelkezik a vizsgált egyén. Az időnkénti csípőizületi fájdalom esetében ennek valószínűsége 1,04-szerese, krónikus fájdalom esetén 1,07-szerese (11.;12. sz. melléklet).

Több ízület fájdalmának gyakorisága az idősebb korosztálynál 43%, a középkorúaknál 40%, a fiataloknál 68% (13. sz. melléklet).

A különböző statisztikai próbák eredményeiből megállapítható, hogy az életkor emelkedése mutat a legtöbb esetben statisztikai kapcsolatot az ízületi fájdalmak gyakoriságával.

5.3.3 Nemek és az ízületi fájdalom vizsgálata

A mintába 114 férfi és 195 nő tartozik. A nők körében magasabb krónikus fájdalom gyakoriság (42,6%) állapítható meg a férfiakkal szemben (30,7%), a különbség nem szignifikáns. Az időnként előforduló fájdalom gyakorisága a férfiaknál magasabb (62,3%), a nők értéke 48,7%. Az összes fájdalom prevalenciáját együtt értékelve a férfiak 93%-os és a nők 91,3%-os fájdalom aránya között nincs jelentős különbség (14. sz. táblázat).
A nemek és az ízületi fájdalmak szignifikáns kapcsolata egyedül a háti gerinc szakasz krónikus fájdalma esetében állapítható meg (nők: 20%; férfiak: 7,9%), (p=0,016) (17. sz. táblázat).

A krónikus fájdalom gyakoriságát vizsgálva, nöknél minden ízület esetében magasabb az értéke kivéve a láb területét (nő: 11,8%; férfi: 12,3%) (17.,18. sz. táblázat)

Nők krónikus fájdalma izületenként, a gyakoriság csökkenő sorrendjében: hát (20%); derék (18,5%); nyak (13,8%); váll (10,3%); láb (11,8%); térd (10,8%); csípő (7,2%); boka (4,6%) (17., 18. sz. táblázat).

Férfiak krónikus fájdalma izületenként, a gyakoriság csökkenő sorrendjében: láb (12,3%). derék (11,4%); térd (8,8%); hát (7,9%); nyak (7,9%); váll (7%); boka (5,3%); csípő (5,3%) (17., 18. sz. táblázat).

5.3.4 Fizikai aktivitás és az ízületi fájdalom vizsgálata

Kategórikus változóként vizsgálva szignifikáns összefüggés nem volt megállapítható az ízületi fájdalmak és a fizikai aktivitási kategóriák között, folytonos változóként szignifikáns kapcsolatot találtunk a vállízület (p<0,001) és a boka (p=0,029) fájdalma esetében a heti fizikai aktivitással (16.msz. táblázat).

Az összes ízület krónikus fájdalma az alacsony fizikai aktivitású csoportban magasabb gyakoriságú (54,5%), mint a magas fizikai aktivitású csoportban (37,5%) (14. sz. táblázat). Négy ízület esetében is megállapíthatunk, hogy az alacsony fizikai aktivitású csoportban magasabb krónikus fájdalom gyakoriság jellemező, mint a magas fizikai aktivitású csoportban, a térdízületnél az alacsony- és a magas fizikai aktivitás sorrendjében (27,3%, 10%); háti gerincnél (18,2%, 15%) nyaknál (18,2%; 11,5%) csípőízületnél (9,1%; 7%). A többi ízületnél a magasabb fizikai aktivitású csoportra magasabb krónikus fájdalom gyakoriság jellemező, ennek megfelelően deréktájon az alacsony- és a magas aktivitású csoport sorrendjében (9,1%;16%), vállízületnél (0%; 11%), bokánál (0%; 5%), lábnál (9,1%; 13,5%) (17.;18. sz. táblázat).

Az alacsony fizikai aktivitású csoportban a legmagasabb gyakoriságot a krónikus fájdalmak közül a térdízület mutat (27,3%). A magas fizikai aktivitású csoportban a krónikus fájdalmak közül a legmagasabb gyakoriságot a derék tájon állapíthatjuk meg (16%), de a kapcsolat nem szignifikáns (17.;18. sz. táblázat).
5.3.5 BMI és ízületi fájdalom vizsgálata

Az összes ízület fájdalma és a BMI kategóriák között vizsgálatunkban nem számolhatunk be szignifikáns különbségről. Ugyanakkor az összes ízület krónikus fájdalma inkább jellemző az elhízottakra (50%), a túlsúlyosaknál 40,6%-os a gyakorisága, a normál súlyúaknál 33,5%-os (14. sz. táblázat).

A kapcsolat szerossági mérőszámokat értékelve a BMI és boka (p=0,003) valamint a láb (p=0,018) mutat szignifikáns összefüggést (16. sz. táblázat). A logisztikus regressziós analízis eredményként a BMI növekedésével 1,09-szer nő annak a valószínűsége, hogy időnkénti boka fájdalma van az illetőnek (p=0,026) (12. sz. melléklet).

A BMI és egyes ízületi fájdalmak gyakorisága között pozitív kapcsolat állapítható meg. Szignifikáns kapcsolata a BMI növekedésével a boka- és a lábfájdalomnak van. Elhízottaknál a krónikus ízületi fájdalmak közül a három legmagasabb gyakoriság az alábbi ízületeknél állapítható meg: láb:21,7%; derék:17,4%; térd:15,2% (17.;18. sz. táblázat).

Normál súlyú kategóriában a deréktájék (18%), a háti gerinc (16,2%) és a nyaki gerinc krónikus fájdalma (12%) mutatja a legnagyobb gyakoriságot (17.;18. sz. táblázat).

5.4 Megbeszélés

5.4.1 Ízületi fájdalom gyakoriságának vizsgálata

A téma vizsgálatának jelentőségét mutatja, hogy széles nemzetközi irodalmi adatbázis született az elmúlt években az ízületi fájdalom kutatásáról. Az epidemiológiai jellegű tanulmányokban az ízületi fájdalom vizsgálata nem egységes, meglehetősen széles skáláját találhatjuk, ezek az eltérések a kutatási eredmények összehasonlítását is megnehezítik. A témában kevés hazai kutatás adatára támaszkodhatunk.

Vizsgálatunkban az egy és több ízületet érintő krónikus fájdalom gyakorisága együttesen 38% volt. A Hungarostudy 2002 eredményei közel hasonlóak sajátadatainkhoz, amely szerint a magyar lakosság több mint egyharmada ad számot

Az irodalmi adatok megegyeznek arról, hogy a derékfájdalom az egyik leggyakrabban előforduló izületi fájdalom. Horváth és szerzőtársainak (2006) eredményei (44,1%) és jelen vizsgálatunk adatai (36,4%) is megerősítik, hogy a vizsgált izületek közül legnagyobb arányúak a derék fájdalom előfordulását tekinthetjük. Eredményeink a derékfájdalom gyakoriságát tekintve (36,4%) a dán populációban mért 37,85%-os megoszlás adataihoz közelítenek a leginkább (Mølgaard és mtsai., 2010). Nemzetközi adatok szerint a krónikus derékfájdalom gyakorisága 23% (Balague és mtsai., 2012), saját vizsgálati adatink alacsonyabb gyakoriságot mutattak (18,6%).

Kutatásunkban a krónikus és az időnkénti fájdalmakat együtt értékelve a térdnél 23,8%-os, a csipőizület esetében 13,4%-os a fájdalom előfordulása. Horváth és szerzőtársai (2011) vizsgálatában a térdpanasz előfordulása a lakosságban 30,4%, csipőizületi fájdalom 22,3%. A szerzők, saját megállapításuk szerint, a nemzetközi adatokhoz képest magasabb izületi fájdalom prevalencia értékekről számoltak be. A fenti adatok a saját vizsgálatunkban tapasztaltaknál is magasabb gyakoriságot mutatnak. Vizsgálatunk eredményei közelebb állnak Mølgaard és munkatársai (2010) megállapításaihoz a térd- és a csipőizületi fájdalom tekintetében, a dán populációban a térdfájdalom előfordulása 24,9%-os, a csipőfájdalomé 15,7%-os volt, a térdizület fájdalom gyakorisága megelőzte a csipőizületét. Steel és szerzőtársai (2006) tanulmányukban hasonló adatokról számolnak be, ugyan idősebb, angol populációban, ahol a 60 év feletti korosztály térd és csipőizületi fájdalma 20%-os gyakoriságot mutatott.
Vizsgálatunkban a krónikus lábfájdalom gyakorisága 14%-os, az időnkénti és a krónikus fájdalom együttes előfordulása 25,8%. Eredményünk megközelíti Thomas és munkatársai (2011) nagy, átfogó tanulmányának eredményét, valamint Garow és szerzőtársaiét (2004), amely szerint a lábfájdalom 24%-os prevalenciáját lehet megállapítani egy általános populációban. A láb és a deréktájék volt a leggyakrabban fájdalmas terület Mølgaard és munkatársai (2010) vizsgálatában. Hasonló eredményekről számoshatunk be saját mintákból, a krónikus fájdalom kategóriát értékelve, a derék és a hát fájdalma a két leggyakrabban érintett terület és ezt követi a lábfájdalom előfordulásának magas aránya.

Ugyanakkor megállapíthatjuk, hogy a bokaizület együttes fájdalmának előfordulása kutatásunkban kiemelkedően magas volt (12,3%), eltérően más hazai kutatási eredményektől. Horváth és szerzőtársai (2011) a bokaizületi fájdalom 9,7%-os előfordulásáról számoltak be. Eredményünk Thomas és munkatársai (2011) adatokhoz hasonló leginkább, szisztematikus, áttekintő kutatásukban 15%-os prevalenciát jegyeztek a vizsgált populációban.

A vállizületi fájdalom gyakorisága a munkaképes populációban megközelíti a 30%-ot, 4-47% között mozog (Mehlum és mtsai., 2006). Eredményeink a nemzetközi adatokkal harmonizálnak, a vállizület időnkénti és krónikus fájdalmát együtt értékelve 24%-os gyakoriságot mutattak.

négszer inkább jellemezte a váll- és csuklófájdalom azokat, akiknek lábfájdalmuk is volt, mint akiknek nem volt.

5.4.2 Életkor és az ízületi fájdalom vizsgálata

Adataink alapján mind a három, vizsgált korcsoportban a derék- és hátfájdalom mutatja a leggyakoribb időnkénti és krónikus fájdalom előfordulását. A legritkábban érintett ízület a teljes mintában a csípőízület, fájdalma az életkor emelkedésével szignifikáns kapcsolatot mutat. Az 50 év feletti korosztályban a térd krónikus fájdalma háromszor gyakoribb, mint a csípőízület krónikus fájdalma.

Horváth és szerzőtársai (2011) az életkorral a derékfájdalom gyakoriságának növekedését állapították meg. Jelen vizsgálatunkban ez a tendencia nem jelentkezik, magasabb fiatalkori értékeket találunk, amennyiben az időnkénti fájdalom megoszlását tekintjük az összehasonlítás alapjául. A vizsgált mintánk a fizikai aktivitás tekintetében speciális volt, ezért eredményünket a fiatal korosztályra jellemző magas fizikai aktivitással indokolhatjuk. Csökkenő tendenciát mutat az időnkénti derékfájdalom alakulása az életkor előre haladásával. Ugyanakkor a krónikus derékfájdalom emelkedését az életkorral megállapíthatjuk, de a kapcsolat nem szignifikáns.

Az életkorral a váll-, nyak, boka, csípő-, térdízület fájdalma szignifikáns összefüggését állapítottuk meg, hasonló eredményekről számolnak be Picavet és munkatársai (2003) tanulmányukban, az életkor előrehaladásával jellemzőbb volt a boka-, lábfájdalom, és erősen emelkedett a csípő- és térdfájdalom előfordulása. A dél-
dunántúli régió populációjában a csípő- és a térdizület fájdalma szintén korrelációt mutatott az életkorral, amely saját vizsgálatunk eredményére is jellemző (Horváth és mtsai., 2010). A saját vizsgálati adatainkat tekintve a csípőizület krónikus fájdalma esetében nem mutatható ki emelkedő tendencia az életkorral. A térdizület esetében időnkénti és krónikus fájdalmának gyakorisága is emelkedik az életkorral.

Leveille és munkatársai (2005) tanulmányában 72 évesnél idősebbeket vizsgálva, a nők 65%-a számolt be egy vagy több régióban fájdalomról, míg a férfiak 52%-a. Eredményeink több ízület egyidejű fájdalmának alacsonyabb előfordulását mutatják az idősek csoportjában (43%), ugyan 65 évnél fiatalabb egyének vizsgálatát végeztük.

5.4.3 Nemek és az ízületi fájdalom vizsgálata

Vizsgálatunkban a legtöbb esetben nem állapítható meg a nemek és az ízületi fájdalom gyakorisága között statisztikai kapcsolat. Ugyanakkor adataink megerősítik más tanulmányok eredményeit, amelyek szerint a krónikus fájdalom gyakorisága a nőknél mutat magasabb értéket (nők:42,6%; férfiak: 30,7%). Közel hasonló gyakoriságról számolt be Rollman és Lautenbacher (2001) a krónikus fájdalom előfordulását vizsgálva a két nemnél. Felnőtt mintán 17 ország adatait dolgozták fel, nőknél 45%-os, férfiaknál 31%-os gyakoriságot találtak.

Eredményeink szerint nőknél a krónikus fájdalom leginkább a nyaki-, háti gerinc területét és a deréktájéjeket jellemzi; férfiaknál a térdizület, derék, és a láb a leggyakrabban érintett területek. A nemek között szignifikáns különbséget csak egy testrégió krónikus fájdalma mutatott, a háti gerinceszakaszon (p=0,016). Nőknél ez a gyakoriság 20%-os, 12%-kal gyakoribb megjelenése, mint a férfiaknál, amely különbség feltételezhetően a nők anatómiai felépítésével és neurofiziológiai érzékenységével magyarázható. Férfiaknál az időnkénti fájdalom gyakoriságát találtuk magasabbnak, de a különbség nem szignifikáns.

Horváth és munkatársai (2011) tanulmányában a lumbális gerincnél, csípőizületnél, térdizületnél a nők magasabb fájdalom gyakoriság értékeit állapították meg, de eredményeinkhez hasonlóan a fájdalom és a nemek szignifikáns kapcsolatáról nem számoltak be.

A derékfájdalom előfordulását számos európai kutatás vizsgálta. A svéd populációban a nőknél előfordulása 24% míg a férfiaknál 21% (Bingefors és Isacson,
Ezt összehasonlítva vizsgálatunkkal, a krónikus derékfájdalom alacsonyabb gyakoriságát állapíthatjuk meg (férfiak 11,4%; nők 18,5%), az időnkénti derékfájdalom esetében magasabbak az általunk megállapított értékek (férfiak 46,5%; nők 40,5%).

Kutatásunkban hasonló eredményekről számolhatunk be a nyaki szakasz fájdalmát illetően, mint amelyről Mäkelä és munkatársai (1991) számolnak be. A krónikus nyakfájdalom gyakorisága a finn lakosság körében férfiaknál 9%, nőknél 12,5%; tanulmányunkban valamivel magasabb, férfiaknál 7,9%-os, nőknél 13,8%-os előfordulását írhatjuk le. A Központi Statisztikai Hivatal (OLEF, 2003) szignifikáns különbséget talált három izület esetében, a nők esélye a nyak-, hát- vagy derékfájdalomra másfélszer akkora volt, mint a férfiaké. Ezeket az eredményeket erősítit meg a nemzetközi adatok. Statisztikai összefüggést találtak a női nem és a krónikus fájdalom között a holland populációban (909 férfi és 1178 nő), a nyaki gerincen, váll, hát, láb területén Wijnhoven és szerzőtársai (2006), de egyáltalán nem a derék tájon. Vizsgálatunkban a hátfájdalom és a női nem kapcsolata hasonló összefüggést mutat, de a többi izület esetében ez nem volt jellemző.

Vizsgálatunkban a lábfájdalom a férfi nemre jellemzőbb (41,2%), de nem szignifikáns a kapcsolat. Úgy gondoljuk, hogy ezen vizsgálati eredményünket meghatározza, hogy a férfiak fizikai aktivitása nagyon magas volt (gyalogló postások). A nemzetközi irodalom a lábfájdalom és a női nem egyértelmű kapcsolatát állapítja meg, ezek a vizsgálatok idősebb populációban történtek, mint a mi kutatásunk (Mølgaard és mtsai., 2010; Hill és Thomas, 2004).

5.4.4 Fizikai aktivitás és az izületi fájdalom vizsgálata

Értekezésünkben nem tekinthetünk el attól a ténytől, hogy különböző foglalkozású és egyben speciális populációt vizsgáltunk, továbbá attól sem, hogy a munkahelyi fizikai aktivitás jelentősen meghatározza a heti teljes fizikai aktivitást. A gyalogló postások napi 4-5 órát gyalogolnak 24-25 kg-os váltáskával, ebből fakadóan fizikai terhelésüket a munkahelyükön extrém magasnak tekinthetjük, amely tényező befolyásolhatja az izületeik egészségét. Az ülő foglalkozásúak napi nyolc órát ülték, de munkahelyen kívül végzett fizikai aktivitással a mérsékelt vagy magas fizikai aktivitású kategóriába került nagy részük (a teljes mintában csak 11 fő volt inaktív). Statisztikai számításainkánál az egyénre jellemző, teljes, heti fizikai aktivitást vettük alapul, amelynek értelmében az
emberi szervezetre a fizikai aktivitás minden területe hat, nem csak a munkahelyen végzett fizikai aktivitás.

Az összes izület krónikus fájdalmát tekintve vizsgálatunk adatai arra utalnak, hogy az inaktív vagy alacsony fizikai aktivitású csoportnak magasabb arányú a fájdalom gyakorisága (54,5%), mint a mérsékelt vagy magas fizikai aktivitású csoportoké, de a kapcsolat nem szignifikáns. Azonban nem ismerhetjük, hogy a fájdalmaik miatt kevésbé aktivak a vizsgált egyének, vagy az alacsonyabb fizikai aktivitásuk miatt jellemzőbb rájuk inkább a krónikus fájdalom. Ezen felül, eredményeink alapján megmutatkozik, hogy a váll (p<0,001) és a boka (p=0,029) krónikus fájdalma a magas fizikai aktivitással statisztikai kapcsolatot mutat. Vizsgálatunkban más izület esetében nem állapítható meg statisztikai összefüggés a fizikai aktivitással. Ericsen és szerzőtársai (2004) a dán populációt vizsgálták (n=2649 fő), eredményeik alátámasztják saját vizsgálatunk eredményeit, miszerint a fizikai munka nem befolyásolja jelentősen a fájdalom megjelenését.

Vizsgálatunkban nem találtunk kapcsolatot a fizikai aktivitás és a térdfájdalom között, ugyanakkor megállapíthatjuk, hogy az inaktív csoport krónikus térdizületi fájdalma magasabb arányú (27,3%) volt, mint a magas fizikai aktivitású csoport alanyaé (10%). Amíg a nemzetközi adatok az élsportot, a munkahelyi gyakori fizikai terhelést emelik ki rizikó tényezőként, megállapíthatjuk, hogy tanulmányunkban a magas fizikai terhelés ellenére nem jellemző a térdfájdalom a vizsgált populációra (McWilliams és mtsai., 2011). Egyetérthetünk azokkal az irodalmi adatokkal, amelyek szerint a térdizület fizikai terhelése nem befolyásolja jelentősen a fájdalom megjelenését.

A legtöbb nemzetközi tanulmányhoz hasonlóan a csípőizület fájdalmával kapcsolatban sem az inaktivitással, sem a magas fizikai aktivitással nem volt kimutatható összefüggés kutatási eredményeinkben (Hootman és mtsai., 2003). Néhány tanulmány talált kapcsolatot a csípőizület arthrosisa és a munkahelyi, illetve sportaktivitás között (Sharma és mtsai., 2006), más tanulmányok cáfolják ezt a kapcsolatot (Felton és mtsai., 2007). Ratzlaff és munkatársai (2011) (n=2918) a hosszú életperiódusra jellemző, kiemelkedően magas fizikai aktivitás és a csípőarthrosis között talált összefüggést.

Kutatásunkban nem számolhatunk be kapcsolatról a fizikai aktivitás és a derékfájdalom között. Eredményeink ismeretében azokat az irodalmi adatokat

Vizsgálatunkban a váll időnkénti és krónikus fájdalma is kapcsolatot jelez a magas fizikai aktivitással, erre vonatkozóan ellentmondó kutatási eredményeket találni az irodalomban. Eredményeinket megerősítik Herin és munkatársai (2012) (n=12 714) kutatási adatai, összefüggést találtak a munkahelyi biomechanikai hatások és a vállfájdalom között.

5.4.5 BMI és az ízületi fájdalom vizsgálata

Statisztikai adataink arra utalnak, hogy a vizsgált munkaképes mintában a BMI és az ízületi fájdalom között csak egyes ízületek esetében, a bokaízületnél és a lábnál állapítható meg kapcsolatot.

A krónikus fájdalom gyakori előfordulásáról számol be a szakirodalom magas BMI-vel rendelkezőknél, vizsgálatunk eredményei nem erősítik meg ezeket az adatokat. Nem találtunk az összes ízület krónikus fájdalma és a magas BMI értékek között kapcsolatot, amely eredmény valószínűleg annak is köszönhető, hogy fiatal, munkaképes korosztályt vizsgáltunk (Sjøgren és mtsai., 2009; Sowers és mtsai., 2008).

Vizsgálatunk eredményei nem támasztják alá azokat az adatokat, amelyek az elhízás kapcsolatáról számolnak be a térd- és csípőizület fájdalmával (Felson és mtsai., 2000; Horváth és mtsai. 2011). Nem számolhatunk be a csípőizület és a térdizület fájdalma és a magas BMI között fennálló kapcsolatról.

Vizsgálatunkban a BMI és a boka-, lábfájdalom kapcsolatát állapíthattuk meg. A témában végzett kutatások legtöbbe megerősíti ezt az összefüggést (Mølgaard és mtsai., 2010). Butterworth és munkatársai (2012) összefoglaló tanulmányában az elhízottak körében szignifikánsan gyakoribb volt a krónikus sarokfájdalom és a non-specifikus lábfájdalom. A boka időnkénti fájdalmával a BMI szignifikáns kapcsolatot

Vizsgálatunkban nem állapítható meg a derékfájdalom és a BMI kapcsolata, hasonlóan a KSH felméréséhez (OLEF, 2003), ahol arról számoltak be, hogy a magyar lakosságban a túlsúly és a gerincfájdalom között nincs statisztikai értelemben összefüggés. Leboeuf-Yde (1999) áttekintő tanulmánya szerint van kapcsolat a túlsúly és a derékfájdalom között, 65 tanulmány 32%-a számolt be a kapcsolatról, de nem volt erős a kapcsolat a nőknél összehasonlitva a férfiakkal.
5.5 Következtetés

Jelen vizsgálat eredményeiből levonható legfontosabb következtetések:

- A fájdalom lokalizációját és gyakoriságát tekintve a munkaképes populációban a derékfájdalom a leggyakrabban előforduló ízületi fájdalom, a fájdalomtól legkevésbé érintett terület a boka.

- Az életkor növekedésével nő a boka-, térdízület, nyak, váll, csípőízületi fájdalom előfordulásának gyakorisága.

- A női nem és a krónikus hátfájdalom kapcsolata mutatható ki.

- A fizikai inaktivitás és az ízületi fájdalom megjelenése között nem mutatkozik jelentős összefüggés. A magas fizikai aktivitás és a váll-, bokaízület fájdalma között statisztikai kapcsolat állapítható meg.

- A BMI érték növekedésével nő a valószínűsége, hogy boka- illetve lábfájdalma van az egyénnek.

- A vizsgált változók közül (életkor, nem, fizikai aktivitás, testtömegindex), az életkor előrehaladása mutat a legtöbb esetben statisztikai kapcsolatot az ízületi fájdalmak gyakoriságával.
6. Összefoglalás

A fizikai aktivitás hatása az emberi szervezetre szerteágaző, legtöbb esetben kedvező, számos élettani működést pozitívan befolyásol és támogat. Kedvezőtlen, már egészségkárosító hatása a tudomány előtt még részleteiben nem ismert. Vizsgálatunk célja volt, hogy közelebbi képet nyújtsunk a fizikai aktivitás hatásáról a talp nyomásviszonyaira és az ízületi fájdalmak gyakoriságára, az összefüggéseket antropometriai és szociodemográfiai jellemzők további vizsgálatával kívántuk mélyebben feltárni.

A vizsgálat személyek munkavégzésükből fakadóan jellemzően magas fizikai aktivitásúak voltak, amely megkönnyítette a mindennapi fizikai aktivitás hatásának tanulmányozását a mozgatórendszerre.

Összefoglalva megállapíthatjuk, hogy az egyénre jellemző fizikai aktivitás hatása a lábon megjelenik. A magas fizikai aktivitású egyének lába talpnyomás viszonyaik alapján terheltebb a láb középső területén és a laterális metatarsusoknál az alacsonyabb fizikai aktivitású egyénekhez képest. Eredményeink arról árulkodnak, hogy a vizsgált változók közül a többlet testsúly jelenti a legnagyobb terhelést a láb számára. Az életkor már az idősödő, 50-65 éves korosztályban is változásokat hoz létre a talpnyomás mérésében, mely változás utalhat a láb kezdődő funkcionális és lehetséges strukturális változásaira ebben az életkori szakaszban. Jelen kutatási eredményeinket összefoglalva elmondhatjuk, hogy a láb hosszanti boltozata reagál a legérzékenyebb változásokra, különösen a testtömegindex, fizikai aktivitás és az életkor tekintetében.

A vizsgált populációban a fizikai aktivitás magas szintje csak néhány ízületül hozható összefüggésbe, az ízületi fájdalom gyakoribb válása inkább az életkor növekedésével jellemzőbb.

A mindennapi fizikai aktivitást jelentősen meghatározhata a munkahelyen végzett fizikai aktivitás, a láb foglalkozásegészségügyi védelme megfelelő cipők illetve talpbetétek fejlesztésével, alkalmazásával a munkahelyeken megelőzheti a láb túlterhelését és az ebből fakadó panaszokat. Úgy gondoljuk, hogy pedobarográfiai vizsgálati eredményeink előremutatóak lehetnek a láb egészségének megőrzésével kapcsolatban, a klinikai gyakorlatban és megfelelő rehabilitációs talpbetétek és gyógycipők tervezésekor is.

81
7. Új eredmények bemutatása

- Tudomásunk szerint, vizsgálati eredményeink először mutathatják be Magyarországon az egyénre jellemző fizikai aktivitás és az ízületi fájdalom lehetséges kapcsolatát.

- Tudományos munkánkkal először számolhatunk be az egyénre jellemző fizikai aktivitás talpnyomás mintákat befolyásoló hatásáról. Eredményeink azt mutatják, hogy az egyénre jellemző magas fizikai aktivitás jelentősen befolyásolja a talp nyomásviszonyait.

- Vizsgálatunk során objektív módszerrel megállapítottuk, hogy több vizsgált változó, mint a testtömegindex, az idősödés és az egyénre jellemező fizikai aktivitás hatása a talp területein belül a hosszanti boltozatra a legjelentősebb. Jelen kutatásunkban arról az eredményről számolhatunk be, hogy feltételezhetően a láb hosszboltozata a legérzékenyebben reagáló terület a lábon, több, vizsgált tényező esetében is.
8. Köszönetnyilvánítás

Köszönettel és hálával tartozom Kránicz János professzor úrnak a témavezetői teendők ellátásáért. Külön köszönöm, hogy segítséget nyújtott a hosszú publikációs folyamat alatt szakmai és lelki támogatással, biztatással. A téma kutatásában, a minta fizikális vizsgálatában közvetlenül is részt vett, ezzel is emelve a tanulmány szakmai értékét és színvonalát.

Köszönet illeti Galamosné Tiszberger Mónika adjunktus asszonyt odaadó munkájáért, amit a kutatási témában a közlemények és az értekezés statisztikai kiértékelésében nyújtott.

Munkahelyi vezetőim és munkatársaim megértő türelmét is megköszönöm.

Hálával tartozom szeretteimnek, családomnak és barátaimnak, hogy kitartóan biztattak és támogattak.
9. Melléklet

1.sz. melléklet

IPAQ
International Physical Activity Questionnaire
Nemzetközi Fizikai Aktivitás Kérdőív

Érdeklődésünk arra irányul, hogy felmérjük, milyen jellegű fizikai aktivitást végez Ön a mindennapi élete során. A kérdések a legutolsó 7 nap során végzett fizikai aktivitásra irányulnak. Kérem, válaszoljon a kérdésre akkor is, ha nem tartja magát aktív személynek. Gondolja végig, hogy milyen fizikai jellegű tevékenységet végez a munkahelyén, a ház körül, napi helyváltoztatásai során (munkahely, óvoda, iskola megközelítése, bevásárlás, illetve szabadidős tevékenység végzésekor, kirándulás, sporttevékenységkor).

Gondoljon végig az elmúlt 7 nap során végzett minden intenzív és mérsékelt fizikai aktivitást, tevékenységet. Az intenzív fizikai tevékenység minden olyan mozgásformára utal, amely során légzése jelentősen gyorsabb a megszokottnál, (lihegés). A mérsékelt tevékenység olyan mozgásformára utal, amely során enyhén emelkedik a légzésszáma (enyhe lihegés).

1. Fejezet. Munkával kapcsolatos fizikai aktivitás, tevékenység

Az első rész az Ön munkájára irányul. Ez magába foglalja az otthonán kívül végzett fizetett munkát, gazdálkodást, önökéntes munkát, foglalkozásokon való részvételt vagy egyéb nem fizetett munkát. Nem foglalja magába azt a nem fizetett munkát, amit a házkörül végez pl.: házimunka, kertészkedés, karbantartás, illetve a család ellátása. Ezekre a harmadik fejezetben kérdezzünk majd rá.

1. Van-e jelenleg munkája, illetve végez-e otthonán kívüli nem fizetett munkát?

1, igen
2, nem ➔ Ugorjon a 2. fejezetre: közlekedés

Az alábbi kérdések a fizetett és nem fizetett munkavégzés során elmúlt 7 napban végzett fizikai tevékenységre kérdeznek rá. Ez nem tartalmazza a munkahelyre és a hazatörténő utazást.

2. Az elmúlt 7 nap során hány napon végzett intenzív fizikai tevékenységet, mint pl.: nehéz tárgyak emelése, ásás, nehéz fizikai szerelő munka vagy lépcsőzés a munkája részeként? Csak olyan fizikai tevékenységre gondoljon, amit legalább folyamatosan 10 percig végzett alkalmanként.

1, ___nap / hét
2, nem végeztem munkával kapcsolatos nehéz fizikai tevékenységet ➔ lépjen a 4. kérdésre.
3. Általában mennyi időt töltött egy ilyen napon intenzív fizikai tevékenységgel a munkája részeként?
_ óra / nap
_ perc / nap

4. Ismét gondolja végig azokat a fizikai tevékenységi formákat, amelyet legalább 10 percig végzett alkalmanként. Az elmúlt 7 nap során hány napon végzett mérsékelt fizikai aktivitást pl.: könnyű tárgyak cipelése a munkája részeként. Kérem, a gyaloglást ne számítsa bele.
1. _ nap / hét
2. nem végzhet mérséklő fizikai tevékenységet a munkám részeként → lépjen a 6. kérdésre.

5. Általában mennyi időt töltött mérsékelt fizikai tevékenységgel egy ilyen napon a munkája során?
_ óra / nap
_ perc / nap

6. Az elmúlt 7 nap során hány napon gyalogolt legalább 10 percig alkalmanként a munkája részeként? Kérem, ne számolja be a munkába, ill. haza történő utazáshoz kapcsolódó gyaloglást.
1. _ nap / hét
2. munkámmal kapcsolatban nem gyalogolok → lépjen a 2. fejezetre: közlekedés

7. Általában mennyi időt töltött gyaloglással egy ilyen napon a munkája részeként?
_ óra / nap
_ perc / nap

II. Fejezet. Közlekedéssel kapcsolatos fizikai aktivitás

Ezek a kérdések arra vonatkoznak, hogy utazik egyik helyről a másikra, mint pl. munkába, boltba, moziba stb.

8. Az elmúlt 7 nap során hány napon utazott gépjárművel, mint pl.: vonattal, busszal, autóval illetve villamossal?
1. _ nap / hét
2. nem utaztam gépjárművel → ugorjon a 10. kérdésre

9. Általában mennyi időt töltött egy ilyen napon vonattal, busszal, autóval, villamossal, vagy egyéb gépjárművel történő utazással?
_ óra / nap
_ perc / nap

Most csak azt gondolja végig, hogy mennyit kerékpározott vagy gyalogolt munkába illetve hazafelé, vagy egyik helyről a másik helyre, illetve kedvtelésből.

85
10. Az elmúlt 7 nap során hány napon kerékpározott alkalmanként legalább 10 perci hút egyik helyről a másikra.
1. _ nap / hét
2. nem kerékpároztam egyik helyről a másikra → lépjen a 12. kérdésre

11. Mennyi időt töltött általában egy ilyen napon egyik helyről a másik helyre történő kerékpározással?
 _ óra / nap
 _ perc / nap

12. Az elmúlt 7 napban hány napon gyalogolt alkalmanként legalább 10 perci hút egyik helyről a másikra?
1. _ nap / hét
2. nem gyalogoltam egyik helyről a másik helyre → lépjen a 3. fejezetre: házimunka

13. Mennyi időt töltött általában egy ilyen napon egyik helyről a másik helyre történő gyaloglással?
 _ óra / nap
 _ perc / nap

III. Fejezet: házimunka, házzal kapcsolatos karbantartás, családról gondoskodás

Ez a fejezet azokról a fizikai tevékenységekről szól, amit az elmúlt hét napban végzett a házkörül, mint pl.: házimunkát, kertészkedést, általános karbantartási munkákat és a családról való gondoskodást.

14. Gondolja végig azokat a fizikai tevékenységi formákat, amelyek legalább 10 percig tartottak. Az elmúlt 7 napban Ön hány napon végzett nehéz fizikai tevékenységet, mint pl.: nehéz tárgy emelése, faapritás, hólapátolás, vagy ásás kertben vagy telken?
1. _ nap / hét
2. Nem végeztem nehéz fizikai tevékenységet kertben vagy telken → lépjen a 16. kérdésre

15. Általában mennyi ideig végzett nehéz fizikai aktivitást egy ilyen napon a kertben vagy a telken?
 _ óra / nap
 _ perc / nap

16. Ismét gondolja végig azokat a fizikai tevékenységi formákat, amelyet legalább 10 percig végzett alkalmanként. Az elmúlt 7 nap során hány napon végzett enyhe fizikai tevékenységet, mint pl.: könnyű süly cipelése, söprés, ablakmosás, gereblyezés kertben, telken?
1. _ nap / hét
2. nem végeztem enyhe fizikai tevékenységet kertben vagy telken → lépjen a 18. kérdésre
17. Mennyi ideig tartott általában egy ilyen napon ez a mérsékelt fizikai tevékenység a kertben vagy a telken?
 _ óra / nap
 _ perc / nap

18. Ismét gondolja végig azokat a fizikai tevékenységi formákat, amelyet legalább 10 percig végzett alkalmanként. Az elmúlt 7 nap során hány napon végzett mérsékelt fizikai tevékenységet, mint pl.: enyhe súly cipelése, ablakmosás, felmosás vagy söprés az otthonában?
 1._ nap / hét
 2. nem végeztem fizikai tevékenységet otthonomban → lépjen a 4. fejezetre: rekreáció, sport, szabadidős fizikai tevékenység

19. Mennyi ideig tartott általában egy ilyen napon ez a mérsékelt fizikai tevékenység az otthonában?
 _ óra / nap
 _ perc / nap

IV. fejezet: rekreáció, sport és szabadidős fizikai aktivitás

Ez a fejezet a azokról a fizikai tevékenységekről szól, amit az elmúlt 7 napban végzett kizárólag rekreációs, sport és egyéb mozgással és szabadidős tevékenységgel. Kérjük, ne vegye figyelembe azokat a tevékenységeket, amiket már korábban megemlített.

20. Ne vegye figyelembe azt a gyaloglási időtartamot, amit már korábban említett, hány napon gyalogolt az elmúlt 7 napon legalább 10 percet a szabadidejében?
 1._ nap / hét
 2. Nem gyalogoltam a szabadidőmben → lépjen a 22. kérdésre

21. Mennyi időt töltött általában egy ilyen napon gyaloglással a szabadidejében?
 _ óra / nap
 _ perc / nap

22. Gondolja végig azokat a fizikai tevékenységeket, ami legalább 10 percig tartott. Az elmúlt 7 napban hány napon végzett nehéz fizikai tevékenységet, mint aerobick, futás, gyors kerékpározás, vagy gyors futás a szabadidejében.
 1._ nap / hét
 2. Nem végeztem nehéz fizikai tevékenységet a szabadidőmben → lépjen a 24. kérdésre

23. Mennyi időt töltött általában nehéz fizikai aktivitással egy ilyen napon szabadidejében?
 _ óra / nap
 _ perc / nap
24. Újra gondolja végig azokat a fizikai tevékenységeket, amelyek legalább 10 percig tartottak. Ez **elmúlt 7 napban** hány napot töltött mérsékelt fizikai aktivitással, mint pl.: kerékpározás és úszás közepes tempóban, páros tenisz, tánc a **szabadidejében**?
 1. _nap / hét_
 2. nem végeztem mérsékelt fizikai aktivitást a szabadidőmben → lépjen az **5. fejezetre:** időtöltés ülve

25. Mennyi időt töltött általában egy ilyen napon **mérsékelt** fizikai tevékenységgel a szabadidejében?
 _ óra / nap_
 _ perc / nap_

V. Fejezet: Időtöltés ülve

Az utolsó kérdések az ülve töltött időre vonatkoznak a munkahelyén, otthonában, foglalkozáson való részvételkor, szabadidős tevékenység során, mint pl.: asztalnál ülés, barátoknál tett látogatás, olvasás, fekvés, ülés tévé nézésekor. A gépjárművön ülés időtöltésére nem tartozik ide.

26. **Az elmúlt 7 napban** mennyi időt töltött általában **ülő helyzetben** egy **hétköznap**?
 _ óra / nap_
 _ perc / nap_

27. **Az elmúlt 7 napban** mennyi időt töltött **ülő helyzetben** **hétvégén**?
 _ óra / nap_
 _ perc / nap_

Köszönjük részvételét a kérdőív kitöltésében!
2.sz. melléklet

Fizikai aktivitási szintek meghatározása az IPAQ értékelő rendszere alapján.

1. **Alacsony:** Ez a legalacsonyabb fizikai aktivitási szint. Azok az egyének tartoznak ide, akik nem tartoznak a mérsékelt, illetve a magas fizikai aktivitású kategóriába sem.

2. **Mérsékelt:** Az alábbi három kritériumnak megfelelő fizikai aktivitású személyek tartoznak ebbe a csoportba:
 - 3 vagy több napon végzett magas fizikai aktivitás legalább 20 perc/nap, vagy
 - 5 vagy több napon mérsékelt fizikai aktivitás és/vagy gyaloglás legalább 30 perc/nap, vagy
 - 5 vagy több napon kombinációja a gyaloglásnak, mérsékelt és nehéz fizikai aktivitásnak, ami eléri a legalább 600 MET-percek/ hét értéket.

3. **Magas:** Az alábbi három kritériumnak megfelelő fizikai aktivitású személyek tartoznak ebbe a csoportba:
 - magas fizikai aktivitás végzése legalább 3 napon, összesen legalább 1500 MET-percek/ hét értékben, vagy
 - 7 vagy több napon kombinációja a gyaloglásnak, mérsékelt vagy nehéz fizikai aktivitásnak összesen legalább 3000 MET-percek/ hét értékben.

Totál fizikai aktivitás (MET-percek/hét) = totál munka + totál közlekedés + totál háztartás + totál szabadidő MET-percek/hét.

(International Physical Activity Questionnaire website. www.ipaq.ki.se)
3.sz. melléklet

Talpnyomás minták vizsgálata életkori csoportok szerint, a minta nem-, testtömeg index és fizikai aktivitás jellemzői. Szignifikáns különbségek jelölése (n=251).

<table>
<thead>
<tr>
<th></th>
<th>fiatal (n=54 fő)</th>
<th>középkorú (n=143 fő)</th>
<th>idősségő (n=54 fő)</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem fő; nő (%)</td>
<td>43; 58</td>
<td>35; 65</td>
<td>28; 72</td>
<td>1.48</td>
<td>0.229</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23,8 ± 4,4</td>
<td>25,1 ± 4,2</td>
<td>26,1± 4,6</td>
<td>3.80</td>
<td>0.023</td>
</tr>
<tr>
<td>Totál fizikai aktivitás (MET-percek/hét)</td>
<td>5948,8 ± 5064,6</td>
<td>6901,8 ± 5429,0</td>
<td>5646,5 ± 4254,0</td>
<td>1.48</td>
<td>0.229</td>
</tr>
</tbody>
</table>

4.sz. melléklet

Nyomás-idő integral értékek, Kontakt idő értékek esetében százálokos különbségek és szignifikancia ábrázolása a három életkor csoportban (F, K, I) nyolc talpterinüen, (n=251). (fiatal hány százalékkal tér el a középkorútól; fiatal hány százalékkal tér el az időstől; középkorú hány százalékkal tér el az időstől)

<table>
<thead>
<tr>
<th>Nyomás-idő integrál (Ns/cm²)</th>
<th>fiatal - középkorú</th>
<th>idősségő - fiatal</th>
<th>idősségő - középkorú</th>
<th>F-K</th>
<th>I-F</th>
<th>I-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0,00%</td>
<td>-6,45%</td>
<td>0,93%</td>
<td>0,026</td>
<td>0,110</td>
<td>0,765</td>
</tr>
<tr>
<td>LS</td>
<td>-4,95%</td>
<td>-6,93%</td>
<td>-1,88%</td>
<td>0,214</td>
<td>0,150</td>
<td>0,620</td>
</tr>
<tr>
<td>MS</td>
<td>1,79%</td>
<td>0,77%</td>
<td>-1,05%</td>
<td>0,605</td>
<td>0,854</td>
<td>0,767</td>
</tr>
<tr>
<td>LLK</td>
<td>-20,66%</td>
<td>-6,06%</td>
<td>12,10%</td>
<td>0,006</td>
<td>0,503</td>
<td>0,053</td>
</tr>
<tr>
<td>MLK</td>
<td>-15,13%</td>
<td>-24,70%</td>
<td>-8,31%</td>
<td>0,010</td>
<td>0,000</td>
<td>0,101</td>
</tr>
<tr>
<td>LMT</td>
<td>-1,41%</td>
<td>8,04%</td>
<td>9,31%</td>
<td>0,727</td>
<td>0,099</td>
<td>0,020</td>
</tr>
<tr>
<td>MMT</td>
<td>-4,09%</td>
<td>-7,85%</td>
<td>3,61%</td>
<td>0,346</td>
<td>0,134</td>
<td>0,387</td>
</tr>
<tr>
<td>LU</td>
<td>-18,04%</td>
<td>-19,54%</td>
<td>-1,27%</td>
<td>0,024</td>
<td>0,042</td>
<td>0,850</td>
</tr>
<tr>
<td>MU</td>
<td>-17,17%</td>
<td>-14,33%</td>
<td>2,43%</td>
<td>0,012</td>
<td>0,083</td>
<td>0,677</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kontakt idő (s)</th>
<th>fiatal - középkorú</th>
<th>idősségő - fiatal</th>
<th>idősségő - középkorú</th>
<th>F-K</th>
<th>I-F</th>
<th>I-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-6,28%</td>
<td>-7,04%</td>
<td>-0,71%</td>
<td>0,000</td>
<td>0,000</td>
<td>0,634</td>
</tr>
<tr>
<td>LS</td>
<td>-4,95%</td>
<td>-5,54%</td>
<td>0,671</td>
<td>0,074</td>
<td>0,010</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>-1,19%</td>
<td>-3,35%</td>
<td>0,292</td>
<td>0,618</td>
<td>0,098</td>
<td></td>
</tr>
<tr>
<td>LLK</td>
<td>-0,64%</td>
<td>0,06%</td>
<td>0,693</td>
<td>0,768</td>
<td>0,968</td>
<td></td>
</tr>
<tr>
<td>MLK</td>
<td>-9,71%</td>
<td>-4,39%</td>
<td>0,048</td>
<td>0,002</td>
<td>0,073</td>
<td></td>
</tr>
<tr>
<td>LMT</td>
<td>-1,65%</td>
<td>-1,84%</td>
<td>0,031</td>
<td>0,858</td>
<td>0,018</td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>0,36%</td>
<td>-0,87%</td>
<td>0,136</td>
<td>0,716</td>
<td>0,291</td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>-2,22%</td>
<td>-1,12%</td>
<td>0,347</td>
<td>0,113</td>
<td>0,331</td>
<td></td>
</tr>
</tbody>
</table>

(LS= laterális sarok, MS= mediális sarok, LLK=laterális lábközép, MLK=mediális lábközép, LMT=laterális metatarsus, MMT=mediális metatarsus, LU=laterális ujjak, MU=mediális ujjak)
5.sz. melléklet

Kontakt terület, Csúcsgnyomás, Maximális erő eloszlása nyolc talpi régióban, három életkor csoportban (F, K, I), százalékos különbségek és szignifikancia ábrázolása. (n=251) (fiatal hány százalékkal tér el a középkorútól; fiatal hány százalékkal tér el az időstől; középkorú hány százalékkal tér el az időstől)

<table>
<thead>
<tr>
<th>Kontakt terület (cm²)</th>
<th>fiatal - középkorú</th>
<th>idősk - fiatal</th>
<th>idősk - középkorú</th>
<th>F-K</th>
<th>I-F</th>
<th>I-K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>-3,07%</td>
<td>-2,15%</td>
<td>0,89%</td>
<td>0,016</td>
<td>0,169</td>
<td>0,449</td>
</tr>
<tr>
<td>LS</td>
<td>-2,42%</td>
<td>-4,45%</td>
<td>-1,98%</td>
<td>0,496</td>
<td>0,299</td>
<td>0,568</td>
</tr>
<tr>
<td>MS</td>
<td>3,46%</td>
<td>4,14%</td>
<td>0,70%</td>
<td>0,025</td>
<td>0,026</td>
<td>0,660</td>
</tr>
<tr>
<td>LLK</td>
<td>-5,82%</td>
<td>-4,92%</td>
<td>0,85%</td>
<td>0,035</td>
<td>0,138</td>
<td>0,743</td>
</tr>
<tr>
<td>MLK</td>
<td>-11,77%</td>
<td>-13,18%</td>
<td>-1,26%</td>
<td>0,030</td>
<td>0,044</td>
<td>0,795</td>
</tr>
<tr>
<td>LMT</td>
<td>3,02%</td>
<td>3,60%</td>
<td>0,60%</td>
<td>0,028</td>
<td>0,030</td>
<td>0,674</td>
</tr>
<tr>
<td>MMT</td>
<td>2,42%</td>
<td>0,49%</td>
<td>-1,98%</td>
<td>0,060</td>
<td>0,751</td>
<td>0,133</td>
</tr>
<tr>
<td>LU</td>
<td>5,67%</td>
<td>8,48%</td>
<td>2,97%</td>
<td>0,088</td>
<td>0,034</td>
<td>0,398</td>
</tr>
<tr>
<td>MU</td>
<td>1,63%</td>
<td>3,29%</td>
<td>1,69%</td>
<td>0,253</td>
<td>0,056</td>
<td>0,244</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Csúcsgnyomás (N/cm²)</th>
<th>Total</th>
<th>-4,88%</th>
<th>-3,44%</th>
<th>1,37%</th>
<th>0,109</th>
<th>0,348</th>
<th>0,637</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>1,96%</td>
<td>5,86%</td>
<td>3,98%</td>
<td>0,502</td>
<td>0,095</td>
<td>0,180</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>4,11%</td>
<td>10,70%</td>
<td>6,87%</td>
<td>0,166</td>
<td>0,003</td>
<td>0,027</td>
<td></td>
</tr>
<tr>
<td>LLK</td>
<td>-17,63%</td>
<td>1,91%</td>
<td>16,61%</td>
<td>0,020</td>
<td>0,834</td>
<td>0,010</td>
<td></td>
</tr>
<tr>
<td>MLK</td>
<td>-5,16%</td>
<td>-1,94%</td>
<td>3,06%</td>
<td>0,175</td>
<td>0,672</td>
<td>0,397</td>
<td></td>
</tr>
<tr>
<td>LMT</td>
<td>3,52%</td>
<td>12,55%</td>
<td>9,36%</td>
<td>0,395</td>
<td>0,012</td>
<td>0,029</td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>0,85%</td>
<td>-0,67%</td>
<td>-1,53%</td>
<td>0,823</td>
<td>0,883</td>
<td>0,689</td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>-8,81%</td>
<td>-8,38%</td>
<td>0,39%</td>
<td>0,179</td>
<td>0,289</td>
<td>0,948</td>
<td></td>
</tr>
<tr>
<td>MU</td>
<td>-10,35%</td>
<td>-5,65%</td>
<td>4,25%</td>
<td>0,032</td>
<td>0,331</td>
<td>0,331</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximális erő (N)</th>
<th>Total</th>
<th>0,79%</th>
<th>2,33%</th>
<th>1,55%</th>
<th>0,368</th>
<th>0,029</th>
<th>0,083</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS</td>
<td>-1,83%</td>
<td>-5,28%</td>
<td>-3,38%</td>
<td>0,740</td>
<td>0,428</td>
<td>0,533</td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>4,72%</td>
<td>8,17%</td>
<td>3,62%</td>
<td>0,028</td>
<td>0,002</td>
<td>0,107</td>
<td></td>
</tr>
<tr>
<td>LLK</td>
<td>-13,52%</td>
<td>-4,99%</td>
<td>7,52%</td>
<td>0,030</td>
<td>0,507</td>
<td>0,172</td>
<td></td>
</tr>
<tr>
<td>MLK</td>
<td>-9,94%</td>
<td>-8,62%</td>
<td>1,21%</td>
<td>0,168</td>
<td>0,321</td>
<td>0,854</td>
<td></td>
</tr>
<tr>
<td>LMT</td>
<td>1,86%</td>
<td>9,25%</td>
<td>7,52%</td>
<td>0,551</td>
<td>0,014</td>
<td>0,018</td>
<td></td>
</tr>
<tr>
<td>MMT</td>
<td>5,60%</td>
<td>-1,87%</td>
<td>7,91%</td>
<td>0,015</td>
<td>0,199</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>LU</td>
<td>-3,57%</td>
<td>-1,44%</td>
<td>2,06%</td>
<td>0,574</td>
<td>0,851</td>
<td>0,737</td>
<td></td>
</tr>
<tr>
<td>MU</td>
<td>-6,60%</td>
<td>4,36%</td>
<td>10,28%</td>
<td>0,081</td>
<td>0,338</td>
<td>0,044</td>
<td></td>
</tr>
</tbody>
</table>

(LS=laterális sarok, MS=mediális sarok, LLK=laterális lábközép, MLK=mediális lábközép, LMT=laterális metatarsus, MMT=mediális metatarsus, LU=laterális ujjak, MU=mediális ujjak)
6.sz. melléklet
Talpnyomás minták vizsgálata nemi csoportok szerint. A minta életkor, testtömeg index, fizikai aktivitás jellemzői (átlag; szórás). Szignifikáns különbségek jelölése. (n=258).

<table>
<thead>
<tr>
<th></th>
<th>férfi (n=89)</th>
<th>nő (n= 169)</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totál fizikai aktivitás (MET-perce/hét)</td>
<td>10385,8 ± 5045,2</td>
<td>4201,4 ± 3649,6</td>
<td>10,24</td>
<td>0,000</td>
</tr>
<tr>
<td>Életkor</td>
<td>37,4 ± 10,2</td>
<td>40,2 ± 10,2</td>
<td>-2,086</td>
<td>0,038</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25,9 ± 3,36</td>
<td>24,5 ± 4,7</td>
<td>2,693</td>
<td>0,000</td>
</tr>
</tbody>
</table>

7.sz. melléklet
Talpnyomás minták vizsgálata heti, totál fizikai aktivitás csoportok szerint. A minta nem, életkor és testtömeg index jérek, (átlag; szórás)
A nem vizsgálatánál khi négyzet érték van feltüntetve. (n=250)

<table>
<thead>
<tr>
<th></th>
<th>Mérsékelt fizikai aktivitás (FA I) n=88</th>
<th>Magas fizikai aktivitás (FA II) n=162</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem (fő)</td>
<td>ffi=8; nő= 80</td>
<td>ffi=78 nő= 84</td>
<td>39,56</td>
<td>0,00</td>
</tr>
<tr>
<td>Életkor (év)</td>
<td>40,2±10,48</td>
<td>39,0±10,00</td>
<td>0,88</td>
<td>0,35</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>23,5±3,9</td>
<td>25,8±4,5</td>
<td>-4,08</td>
<td>0,00</td>
</tr>
<tr>
<td>Totál fizikai aktivitás (MET-perce/hét)</td>
<td>1918,0±694,8</td>
<td>8991,6±4654,3</td>
<td>-19,03</td>
<td>0,00</td>
</tr>
</tbody>
</table>

8.sz. melléklet
Talpnyomás minták vizsgálata testtömeg index kategóriák szerint.
A minta nem, életkor jellemzői. (átlag; szórás).
Szignifikancia ábrázolása. (n=180)

<table>
<thead>
<tr>
<th></th>
<th>Normál BMI kategória (n=142)</th>
<th>Elhízott BMI kategória (n= 38)</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem (fő)</td>
<td>ffi=39; nő= 103</td>
<td>ffi=13 nő= 25</td>
<td>10,6</td>
<td>0,01</td>
</tr>
<tr>
<td>Életkor (év)</td>
<td>38,45±10,31</td>
<td>43,11±10,64</td>
<td>4,57</td>
<td>0,01</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21,90±1,91</td>
<td>32,79±2,42</td>
<td>690</td>
<td>0,01</td>
</tr>
</tbody>
</table>
Ízületi fájdalmakat vizsgáló kérdőív

I. MUNKAHELYI FIZIKAI AKTIVITÁS

1. Ön hány éve dolgozik?

............. éve

2. Milyen munkát végez jelenleg?

1. ülő munkát
2. gyalogló munkát
3. vegyesen ülő és gyalogló munkát
4. kerékpárt használok a munkám közben

3. Hány éve dolgozik jelenlegi munkakörében?

1. 0-5 éve:
2. 5-10 éve:
3. 10-20 éve:
4. több, mint 20 éve:

4. Egy átlagos munkanapon a munkakörében hány órát tölt gyaloglással?

1. nem gyalogolok
2. egy óránál kevesebbet gyalogolok
3. 1-2 órát
4. 3-4 órát
5. 4 óránál többet

II. ÍZÜLETI FÁJDALOM

Az alábbi kérdésekben izületeinek esetleges fájdalmáról érdeklődünk. Amennyiben nem érez fájdalmat kérjük azt is jelölje!

5. Van fájdalmas panasza a nyakára? (nem sérülés miatt)

1. nincs panaszom, nem szokott fájni a nyakam
2. időnként fáj a nyakam
legalább 6 hónapja tart a fájdalom a nyakamban majdnem minden nap

3. Van fájdalmas panasza a hátára? (nem sérülés miatt)

1. nincs panaszom, nem szokott fájni a hátam
2. időnként fáj a hátam
legalább 6 hónapja tart a hátfájdalmam majdnem minden nap
4. Van fájdalmas panasza a derekára? (nem sérülés miatt)

1. nincs panaszom, nem szokott fájni a derekam
2. időnként fáj a derekam
legalább 6 hónapja tart a derék fájdalmam minden nap

5. Van fájdalmas panasza a vállára? (nem sérülés miatt)

<table>
<thead>
<tr>
<th></th>
<th>jobb váll</th>
<th>bal váll</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. nincs panaszom, nem szokott fájni a váll ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. időnként fáj a váll ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. legalább 6 hónapja tart a fájdalom a váll ízületemben majdnem minden nap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Van panasz a csípő ízületére pl. fájdalom, merevség érzet? (nem sérülés miatt)

<table>
<thead>
<tr>
<th></th>
<th>jobb csípő</th>
<th>bal csípő</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. nincs panaszom, nem szokott fájni a csípő ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. időnként fáj vagy merev a csípő ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. legalább 6 hónapja tart a fájdalom vagy merevség érzet a csípő ízületemben majdnem minden nap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. Van fájdalmas panasza a térd ízületére? (nem sérülés miatt)

<table>
<thead>
<tr>
<th></th>
<th>jobb térd</th>
<th>bal térd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. nincs panaszom, nem szokott fájni a térd ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. időnként fáj vagy merev a térd ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. legalább 6 hónapja tart a fájdalom vagy merevség érzet a térd ízületemben majdnem minden nap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Van fájdalmas panasza a boka ízületére? (nem sérülés miatt)

<table>
<thead>
<tr>
<th></th>
<th>jobb boka</th>
<th>bal boka</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. nincs panaszom, nem szokott fájni a boka ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. időnként fáj vagy merev a boka ízületem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. legalább 6 hónapja tart a fájdalom vagy merevség érzet a boka ízületemben majdnem minden nap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Van fájdalmas panasza lábfején, talpán, sarkán, lábujjaiban ? (nem sérülés miatt)

<table>
<thead>
<tr>
<th></th>
<th>jobb láb</th>
<th>bal láb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. nincs panaszom, nem fáj a lábam, talpam, sarkam, lábujjaim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. időnként fáj a lábam, talpam, sarkam, lábujjaim</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. legalább 6 hónapja tart a fájdalom a lábamon, talpamon, sarkamon, lábujjaimon majdnem minden nap</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. Végül a számítógépes feldolgozáshoz kérjük válaszoljon néhány kérdésre!

13. Hány éves Ön? :
 1. 18-30
 2. 31-40
 3. 41-50
 4. 50-

14. Melyik nemhez tartozik?:
 1. férfi
 2. nő:

15. Hány kilógramm az Ön testsúlya? : kg

16. Hány centiméter az Ön testmagassága? : (cipő nélkül) cm
10.sz. melléklet

A „nincs fájdalom”, időnkénti- és krónikus ízületi fájdalom százalékos megoszlása (n=309).

<table>
<thead>
<tr>
<th></th>
<th>Nincs fájdalom</th>
<th>Időnkénti fájdalom</th>
<th>Krónikus fájdalom</th>
</tr>
</thead>
<tbody>
<tr>
<td>nyak</td>
<td>11,2%</td>
<td>14,7%</td>
<td>13,6%</td>
</tr>
<tr>
<td>hát</td>
<td>8,8%</td>
<td>17,8%</td>
<td>18,2%</td>
</tr>
<tr>
<td>derék</td>
<td>8,7%</td>
<td>17,8%</td>
<td>18,6%</td>
</tr>
<tr>
<td>vált</td>
<td>12,4%</td>
<td>13,5%</td>
<td>10,6%</td>
</tr>
<tr>
<td>boka</td>
<td>16,7%</td>
<td>6,6%</td>
<td>5,7%</td>
</tr>
<tr>
<td>térd</td>
<td>12,8%</td>
<td>12,1%</td>
<td>11,7%</td>
</tr>
<tr>
<td>csípő</td>
<td>16,8%</td>
<td>5,8%</td>
<td>7,6%</td>
</tr>
<tr>
<td>láb</td>
<td>12,6%</td>
<td>11,8%</td>
<td>14,0%</td>
</tr>
<tr>
<td>összesen</td>
<td>100,0%</td>
<td>100,0%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

11.sz. melléklet

Multinominális regressziós analízis eredményei az ízületi fájdalmat befolyásoló tényezőkről (referencia csoport a fájdalommentes csoport)

<table>
<thead>
<tr>
<th>NYAK</th>
<th>Fájdalom mértéke</th>
<th>Magyarázó változó</th>
<th>OR</th>
<th>CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Időnként faj</td>
<td>BMI</td>
<td>1,00</td>
<td>0,94</td>
<td>1,06</td>
<td>0,959</td>
</tr>
<tr>
<td></td>
<td>életkor</td>
<td>1,02</td>
<td>0,99</td>
<td>1,04</td>
<td>0,155</td>
</tr>
<tr>
<td></td>
<td>total fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,271</td>
</tr>
<tr>
<td></td>
<td>férfi</td>
<td>0,68</td>
<td>0,36</td>
<td>1,29</td>
<td>0,241</td>
</tr>
<tr>
<td>Krónikus fájdalom</td>
<td>BMI</td>
<td>0,90</td>
<td>0,81</td>
<td>1,00</td>
<td>0,049</td>
</tr>
<tr>
<td></td>
<td>életkor</td>
<td>1,05</td>
<td>1,01</td>
<td>1,09</td>
<td>0,017</td>
</tr>
<tr>
<td></td>
<td>total fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
<td>0,292</td>
</tr>
<tr>
<td></td>
<td>férfi</td>
<td>0,54</td>
<td>0,19</td>
<td>1,29</td>
<td>0,254</td>
</tr>
</tbody>
</table>

HÁT	Időnként faj	BMI	0,99	0,93	1,05	0,759
	életkor	1,01	0,98	1,03	0,480	
	total fizikai aktivitás	1,00	1,00	1,00	0,352	
	férfi	0,73	0,39	1,37	0,332	
Krónikus fájdalom	BMI	0,95	0,87	1,04	0,253	
	életkor	1,03	0,99	1,07	0,106	
	total fizikai aktivitás	1,00	1,00	1,00	0,108	
	férfi	0,25	0,09	0,69	0,007	

DERÉK	Időnként faj	BMI	1,03	0,97	1,10	0,314
	életkor	0,99	0,96	1,01	0,270	
	total fizikai aktivitás	1,00	1,00	1,00	0,575	
	férfi	0,92	0,49	1,74	0,808	
Krónikus fájdalom	BMI	0,97	0,89	1,05	0,444	
	életkor	1,03	0,99	1,07	0,102	
	total fizikai aktivitás	1,00	1,00	1,00	0,103	
	férfi	0,47	0,19	1,18	0,107	

VÁLL	Időnként faj	BMI	1,01	0,95	1,07	0,814
	életkor	1,03	1,00	1,06	0,033	
	total fizikai aktivitás	1,00	1,00	1,00	0,001	
	férfi	0,85	0,44	0,65	0,637	
Krónikus fájdalom	BMI	0,86	0,76	0,97	0,017	
	életkor	1,08	1,03	1,13	0,001	
	total fizikai aktivitás	1,00	1,00	1,00	0,001	
	férfi	0,41	0,13	1,27	0,121	
Multinominális regressziós analízis eredményei az izületi fájdalmat befolyásoló tényezőkről (referencia csoport a fájdalommentes csoport)

<table>
<thead>
<tr>
<th>BOKA</th>
<th>Fájdalom mértéke</th>
<th>Magyarázó változók</th>
<th>OR</th>
<th>CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Időnként fáj</td>
<td>BMI</td>
<td>1,09</td>
<td>1,01</td>
<td>1,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,01</td>
<td>0,98</td>
<td>1,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>0,71</td>
<td>0,32</td>
<td>1,58</td>
</tr>
<tr>
<td></td>
<td>Krónikus fájdalom</td>
<td>BMI</td>
<td>1,12</td>
<td>0,98</td>
<td>1,28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,09</td>
<td>1,02</td>
<td>1,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>1,04</td>
<td>0,27</td>
<td>4,02</td>
</tr>
<tr>
<td></td>
<td>TÉRD</td>
<td>BMI</td>
<td>1,03</td>
<td>0,95</td>
<td>1,08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,03</td>
<td>1,00</td>
<td>1,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>1,03</td>
<td>0,53</td>
<td>1,98</td>
</tr>
<tr>
<td></td>
<td>Krónikus fájdalom</td>
<td>BMI</td>
<td>1,03</td>
<td>0,93</td>
<td>1,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,09</td>
<td>1,04</td>
<td>1,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>0,73</td>
<td>0,26</td>
<td>2,03</td>
</tr>
<tr>
<td></td>
<td>CSÍPÖ</td>
<td>BMI</td>
<td>1,05</td>
<td>0,97</td>
<td>1,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,04</td>
<td>1,00</td>
<td>1,07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>0,33</td>
<td>0,25</td>
<td>1,46</td>
</tr>
<tr>
<td></td>
<td>Krónikus fájdalom</td>
<td>BMI</td>
<td>1,01</td>
<td>0,90</td>
<td>1,14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,07</td>
<td>1,01</td>
<td>1,13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>0,33</td>
<td>0,09</td>
<td>1,15</td>
</tr>
<tr>
<td></td>
<td>LÁB</td>
<td>BMI</td>
<td>0,98</td>
<td>0,91</td>
<td>1,04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,00</td>
<td>0,97</td>
<td>1,02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>0,85</td>
<td>0,43</td>
<td>1,65</td>
</tr>
<tr>
<td></td>
<td>Krónikus fájdalom</td>
<td>BMI</td>
<td>1,08</td>
<td>1,00</td>
<td>1,17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>életkor</td>
<td>1,02</td>
<td>0,98</td>
<td>1,06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>totál fizikai aktivitás</td>
<td>1,00</td>
<td>1,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>férfi</td>
<td>0,75</td>
<td>0,30</td>
<td>1,88</td>
</tr>
</tbody>
</table>
13.sz. melléklet
Ízületi fájdalom kategóriák megoszlása az oszlop százalékában a vizsgált változókon belül (testtömeg index; életkor; Totál fizikai aktivitás, nemek)

<table>
<thead>
<tr>
<th>BMI kategóriák</th>
<th>Életkori kategóriák</th>
<th>Totál fizikai aktivitás kategóriák</th>
<th>Nemek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normál BMI kategória</td>
<td>Túlsúlyos BMI kategória</td>
<td>Elhízott BMI kategória</td>
</tr>
<tr>
<td>nem fáj</td>
<td>10,2%</td>
<td>4,2%</td>
<td>8,7%</td>
</tr>
<tr>
<td>egy ízület fáj</td>
<td>9,6%</td>
<td>12,5%</td>
<td>13,0%</td>
</tr>
<tr>
<td>több ízület fáj</td>
<td>53,9%</td>
<td>43,8%</td>
<td>32,6%</td>
</tr>
</tbody>
</table>

Arnold J.B., Causby R., Pod G.D., et al.: The impact of increasing body mass on peak and mean plantar pressure in asymptomatic adult subjects during walking. Diabet. Foot Ankle 2010;1:5518-DI0:10.3402/dfa.v1i0.5518

Bálint G. Térdfájás és ami mögötte van. LAM 2007;17:717-721.

Eurobarometer (2010): Sport and physical Activity.

Eurobaromètre (2013): Sport and physical activity.

Füzesi Zs. NEJ-2004 Szakértői változat, Egészségmagatartás, Johan Béla Országos Epidemiológiai Központ, 2004; Budapest

Health Statistics Division and Special Survays Division, Statistics Canada, 2003. Canadian Community Health Survey public use microdata file, (Ottawa), Special Surveys Division, Statistics Canada.

Horváth G. Mozgásszervi panaszok és primér degeneratív állapotok prevalenciájának vizsgálata az ágyéki gerinc szakaszon és teherviselő nagyizületeken. Doktori (PhD) - értekezés. 2011; PTE Általános Orvosi Kar

International Physical Activity Questionnaire website. www.ipaq.ki.se

Központi Statisztikai Hivatal: Egészségi állapot felvétel. Budapest;KSH,1996

Menz HB, Morris ME. Clinical determinants of plantar forces and pressures during walking in older people. Gait Post 2006;24:229-236.

Moreira-Silva I., Santos R., Abreu S., Mota J. Association between Body Mass Index and musculoskeletal pain and related symptoms in different body regions among workers. Doi: 10.1177/2158244013491952 Published 5 June 2013

Musculoskeletal Health in Europe Report v5, 2015

Országos Lakossági Egészségfelmérés, Kutatás jelentés OLEF 2003, Országos Epidemiológiai Központ, 2006

Rodgers M.M. Plantar pressure distribution measurement during barefoot walking: normal values and predictive equations. PhD. Thesis 1985; The Pennsylvania State University, University Park, PA

Steel N., Melzer D., Gardener E., McWilliams B. Need for and receipt of hip and knee replacement—a national population survey. Rheumatology 2006;45:1437-1441.

109

11. Publikációs jegyzék

Értekezés alapjál szolgáló közlemények

IF: 0,291

Témában tartott előadások

Leidecker E., Galambosné Tiszberger M., Bohner-Beke A., Molics B., Járomi M., Kránicz J. A study on the plantar pressure distribution among obese and non-obese participants

Obesitologia Hungarica 2015;14: S26-S27.

3 OBESITOLOGIA HUNGARICA From basic science to clinical practice 5 th Central European Congress on Obesity: XXIII. Annual Congress of the Hungarian Society for the Study of Obesity. Budapest, Magyarország, 2015.10.01 -03.

„Sporttudomány az egészség és a teljesítmény szolgálatában” XII. Országos Sporttudományi Kongresszus, Eger, 2015.06.04 -06.

Leidecker E., Kellermann P., Kránicz J. Fizikai aktivitás és inaktivitás hatása az ízületekre, gyalogló védőnek vizsgálata. XXI. Országos Szülésznő-Védőnő-Gyermekápoló Konferencia, Budapest, 2010

Egyéb előadások és közlemények

Közlemények

IF: 0,760

IF: 0,376

IF: 1,525

Előadások

"Sporttudomány az egészség és a teljesítmény szolgálatában" XIII. Országos Sporttudományi Kongresszus. Szombathely, 2016.05.26 -28. (Magyar Sporttudományi Társaság)

Leidecker E., Csite N., Kránicz J. Sportolók vállának vizsgálata" 20 éves a szegedi gyógytornász képzés" Jubileumi Ülés, Szeged, 2010. április 16.

Leidecker E., Pajor V. A gyaloglás szerepe az egészségünkben. Magyar Gyógytornászok Társaságának VII. Kongresszusa, Balatonfüred, 2009

Könyvfejezetek

Leidecker E., Járomi M. 1.2 Izomaktivitási típusok, izomerő meghatározás, gyakorlatformák. In: Járomi M (szerk.) Mozgásterápia elméleti és gyakorlati alapjai . 363 p. Pécs: Pécsi Tudományegyetem Egészségügyi Kar (PTE ETK), 2015. 18-

